Music Wellness Center, Ewha University, South Korea | June 26, 2024

Neural encoding of musical emotion

Seung-Goo Kim¹, Tobias Overath², & Daniela Sammler¹

¹Research Group Neurocognition of Music and Language Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany ²Department of Psychology & Neuroscience, Duke University, NC, USA

https://voxpopulisphere.com/2015/11/01/audio-what-ancient-greek-music-actually-sounded-like/

Music in culture

- Current archeological evidence:
 - Ancient origin of music: > 35k yr ago [1]
 - Human & **speech**: **200k** yr ago [2,3]
 - Writing: 5k yr ago [4]
- Ubiquitous in every human culture [5]

[1] Conard et al. (2009). Nature. [2] Mounier & Lahr. (2019). Nat Comm. [3] Perreault & Mathew. (2012). PLOS ONE. [4] Senner. (1991). [5] Honing et al. (2015). Phil Trans B.

35,000 year-old vulture bone flute from Danube, Germany. [1]

Frameworks of music-evoked emotion

CONCERT FRAME staging

copresence

acoustics

programming

aesthetics

atmosphere

conventions

architectural style

> spatial arrangement

> > additional information

Wald-Fuhrmann et al., 2021, Front. Psychol.

PERFORMED

musicians' behavior

> acoustic realization

visual component

AESTHETIC EXPERIENCE

expectations

states emotions, attention, listening mode

> traits psychological, tastes, listener type, social demographics

prior experiences

LISTENER

Max Planck Institute for Empirical Aesthetics

Frameworks of music-evoked emotion

Wald-Fuhrmann et al., 2021, Front. Psychol.

"BRECVEMA" (Juslin, 2013, *Physics of Life Rev.*)

Max Planck Institute for Empirical Aesthetics

How does music evoke emotions via the brain? **Neuroscientific view**

Music

Brain

SOUND DEMO: J. S. Bach Prelude No.3 in C# major (BWV 848), consonant & dissonant

Study I: Consonant vs. Dissonant music

Music

"Dissonant" stimuli were rated more unpleasant.

stimuli per condition = 20, stimulus duration = 30 s, # subjects = 23 (25.9 yo; 13 F) Kim et al., 2017, Sci Rep. 7

Study I: Consonant vs. Dissonant music

Inferior colliculus z = -15 mm T(21)

BOLD activation in the inferior colliculus (IC) decreased more in individuals who rated dissonant versions worse.

Kim et al., 2017, Sci Rep.

·····

Study I: Consonant vs. Dissonant music

Psycho-Physiological Interaction (PPI)

The IC <u>decoupled</u> more from the left auditory cortex (top-down) in individuals who rated dissonant versions worse.

Kim et al., 2017, Sci Rep.

Cross-correlation

anck Institute pirical Aesthetics

Limitations of controlled stimuli Ceteris paribus... and the subject is not listening.

Disruptive manipulations: validity, generalizability, & specificity?

Solution: Use of natural(istic) stimuli to increase the external validity of neuroscientific studies.

anck Institute pirical Aesthetics

Study II: Approach **Computational models to extract information from natural music**

https://www.irasutoya.com/

Human brains

*Possible mid/high-level representations that are relevant to emotions

How can we extract "meaningful" features from music signals?

anck Institute pirical Aesthetics

Symbol-domain models

Modeling on MIDI notes: **n-gram modeling** (e.g., PPM, HMM), **deep neural networks** (e.g., Melody RNN, MusicRNN, Music Transformer)

Cheung et al., 2019, Current Biology.

But notes/chords should be transcribed correctly.

Kern et al., 2022, eLife.

lax Planck Institute or Empirical Aesthetics

Effects of expressions (tempi & dynamics) Chapin et al., 2010, PLOS One.

Symbolic models do not capture musical expressions!

SOUND DEMO: F. Chopin's Etude in E major (Op. 10, No. 3), performed on / rendered by Kawai CA 950

Audio-domain models

Auditory models: simulated activity of peripheral and central auditory neurons

Santoro et al., 2014, PLOS Comp Biol.

Traditional models mostly simulate cochlear and primary auditory cortex activity.

Music information retrieval (MIR) models: acoustic features relevant to music database

Lartillot, 2017, MIRtoolbox User's Manual.

https://youtu.be/YnL9vAFphmE?si=RyR8PnvE2y9cCijl

Q Ų **+** Ų. "Mushin lurning" From Programmers are also h... Python All > ... 📣 Share Interview with a Senior Python :

"Audio semantic" models

- generate text labels of audio data (e.g., 'babyCry', 'dogBark')
- ("this kind of spectrogram often goes with that video").

A possible mid/high-level representation of sounds

Convolutional neural networks (CNNs) applied to short [~1 s] spectrograms to

Trained on video-audio correspondence to learn the second-order acoustics

VGGish: Hershey et al., 2017, ICASSP

But really? Isn't it just timbre?

SOUND DEMO

Example: Expressive vs. Mechanical *Expressive* > *Mechanical* Chapin et al., 2010, PLOS ONE.

[EXPRESSIVE]: "Frédéric Chopin's Etude in E major, Op.10, No. 3 was performed by an undergraduate piano major (female, 22 years old) on a Kawai CA 950 digital piano"

Audio source: <u>https://doi.org/10.1371/journal.pone.0013812</u>

Example: Expressive vs. Mechanical VGGish representations at various layers (from 1 to 23)

MDS-dim1

Audio source: https://doi.org/10.1371/journal.pone.0013812

SOUND DEMO

L23:EmbeddingBatch

Example: Queen. (1975). Bohemian Rhapsody VGGish representations at various layers (from 1 to 23)

L01:InputBatch

L02:conv1

SOUND DEMO

Audio source: (c) EMI

Example: Queen. (1975). Bohemian Rhapsody VGGish representations at various layers (from 1 to 23)

L02:conv1

CNN embedding for music emotion *recognition* Potentially mid/high-level representation of music signal

Deep audio semantic models carry more information related to expressed emotions than a traditional audio descriptor.

How do we measure brain activity?

Functional magnetic resonance imaging Still the state-of-the-art non-invasive functional imaging

- Hardware: the same MRI at hospitals (but with a different program)
- Mechanism: Blood-oxygenation-leveldependent (BOLD) effect
- **Strengths**: the highest spatial (3-mm-iso) and temporal resolution (1 sec) than any other non-invasive imaging (e.g., PET)
- Weaknesses: indirect neural activity (unlike M/EEG, ECoG), ~120 dB acoustic scanning noise (but there are active noise cancelling headphones for MRI)

Structural MRI Functional (BOLD) MRI

Kim, 2017, Dissertation.

https://www.irasutoya.com/

How do we measure emotions?

Felt vs. perceived emotions We just ask people how they feel...

Rating with a slider

https://www.irasutoya.com

Not at all

How intensively do you feel SAD/HAPPY right now?

Research Questions

Human brains

Computational models

Kim, 2022. Front. Neurosci. https://www.irasutoya.com/

- Q1: How are *felt emotions* and musical enjoyment associated with neural activity over time?
- Q2: Would increasingly abstract representations of music in different layers of the CNN be encoded along the cortical gradient axis of abstraction?
- Q3: How do layer-specific CNN embeddings predict human behavioral ratings of musical emotions?

Methods

Original study Sachs et al., 2020, Neurolmage.

Inter-subject correlation during a "sad" piece of music: $r \sim [0, 0.16]$, cluster-P < 0.05

Sachs et al., 2020, Neurolmage.

https://openneuro.org/datasets/ds003085

Stimuli Sachs et al., 2020, *NeuroImage*.

- Happy [2 min 48 sec]: Lullatone's "Race against the Sunset"
- Sad-short [4 min 16 sec]: Olafur Arnalds's "Frysta"
- Sad-long [8 min 35 sec]: Michael Kamen's "Discovery of the Camp"

Participants & protocol Sachs et al., 2020, Neurolmage.

- N = 40 (21 female, mean age = 24.1 ± 6.24 from LA)
 - Unfamiliar with 3 stimuli and reported "intended" emotions from 60-s excerpts

Passive listening with eyes open

https://www.irasutoya.com/

Rating with a slider

- "The intensity of felt sadness or happiness" (*Emotionality*)
- "The intensity of enjoyment" (Enjoyment)

Analysis overview

Encoding

Encoding analysis

Training set

Model features

Kim, 2022. Front. Neurosci.

Test set

Model features

Layer-specific profile How do we map VGGish-layer-specific encoding on the cortex?

Kim et al., In prep.

Inflated cortical surface and anatomy Just to see better the buried parts of the cortex

Actual brain

(cc) Pr. M. Forest @pixel.com

"Averaged brain"

"Inflated brain"

Maximal prediction accuracy $\mathcal{M} \rightarrow \mathcal{Q}$

Topography of CNN-layer-specific encoding $\mathcal{N} \rightarrow$

What is already known about the cortical topography of information abstraction? Margulies et al., 2016, PNAS

Topography found from resting-state functional connectivity

Percentile along gradient

yer (lags=46s)	100
L2.5 13 13.5 14 260, P < 0.001	50 0 11 12 13 14

Distinctive patterns of Emotionality and Enjoyment $\textcircled{} \bigcirc \bigcirc \rightarrow \textcircled{} \bigcirc$

Brain-emotion correlation ⊖∞↔ fMRI = |Emotionality'| + |Enjoyment'| + error

Discussion

Abstraction of sounds

Marguleius et al., 2016, PNAS

mPFC and emotional processing

Kim et al., In prep.

Etkin, Egner, Kalisch, 2010, Trends in Cognitive Sciences.

Audio semantic model changes were encoded in the mPFC, which showed a sensitivity to musical structures ("boundaries").

Different encoding of emotionality & enjoyment

Pred

mechanisms

vmPFC activity was followed by Enjoyment rating changes.

Aesthetic threshold

Aesthetic threshold

Conclusions

- Naturalistic stimuli with computational models allow ecologically valid investigation of evoked emotions.
- CNN embeddings are sensitive to information that is relevant for emotional responses, beyond low-level audio features. In particular, the abstraction in CNN shows high similarity to the known cortical topography of information abstraction, as well as relevance to behavioral ratings of emotional responses.
- Two continuous ratings (*Emotionality* and *Enjoyment*) were differentially encoded in the brain and predicted by different CNN layers, potentially reflecting distinct mechanisms of *felt* emotions and aesthetic judgements.

anck Institute pirical Aesthetics

Thank you for your attention! (and time for discussion?)

Dr. Daniela Sammler MPI-EA, Frankfurt, Germany

Dr. Tobias Overath Duke University, NC, USA

Dr. Tom H. Fritz MPI-CBS, Leipzig, Germany

https://www.aesthetics.mpg.de/en/research/research-group-neurocognition-of-music-and-language.html

https://seunggookim.github.io/

