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Musical Information and Evoked
Emotions Revealed by CNN

Introduction
Background. Recent work from our group suggests that a pretrained audio convo-
lutional neural network (CNN; VGGish) can capture information in real-world music 
that is relevant to evoked emotions and brain activity in the medial prefrontal cortex 
(mPFC)1. However, we only focused on the relevance of the final layer-space. 
Here, we explored the neural encoding of all layer-spaces and their relationships to 
music-evoked emotions. In particular, we investigated whether the representational 
gradient of increasing abstraction—from superficial to deep layers of the CNN—
bares any resemblance with the well-established functional gradient in the human 
cerebral cortex—from unimodal sensory to transmodal associative regions2.
Research Questions
Q1. Would increasingly abstract representations of music in different layers of the 
CNN be encoded along the axis of the functional gradient2?
Q2. How do layer-specific CNN embeddings predict human behavioral ratings of 
music-evoked emotions?
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Conclusions
C1. The transformation of the auditory information along the functional gradient 
may involve an abstraction mechanism similar to what the CNN implements.
C2. Basic and aesthetic emotional experiences may depend on different 
abstraction levels of the audio signal represented along the functional gradient.
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Table 1. Dimensionality of VGGish embeddings per layer. Conv, convolutional; RL, rectified linear 
unit; MP: max pooling; FC: fully connected. Exp%: explained variance by 50 principal components.

Figure 1. Analysis overview. (a) Linearized encoding analysis5. (b) Models for the embeddings (𝐙) of 
each layer: 𝒚 is either the fMRI time series or the emotional ratings; 𝐗 is the Mel-spectrogram of a 
music sample, 𝓕𝒊 is the truncated embedding function of the i–th layer of the VGGish network; 
superscriptions in parentheses indicate cross-validation partitions [1=training, 2=testing]. (c) Prediction 
accuracies (Pearson correlation coefficients) result in a layer-wise prediction profiles for each voxel.
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R1. VGGish representational gradient maps onto functional gradient

Figure 5. Representational gradient of VGGish layers. (a) Best [i.e., argmax] layers with 
positive lags. (b) Centroid layers with positive lags. Spin-test results (correlation coefficient 
and P-value) in (a, b) indicate significant correspondence to (c) the first functional gradient 
axis2. (d) Best and (e) centroid layers from encoding models with negative lags showed no 
correspondence to the functional gradient.
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R0. Layer-wise neural encoding of VGGish embeddings

Figure 3. Profiles of prediction accuracies in the four ROIs. 

R2. Distinct encoding patterns of emotional ratings
Figure 6. Layer-wise profiles. 
(left) Felt Emotionality highlighted 
superficial layers [similarly to PC3]. 
(right) Enjoyment highlighted 
middle layers.

Layer# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Type Input Conv RL MP Conv RL MP Conv RL Conv RL MP Conv RL Conv RL MP FC RL FC RL FC RL Output

#Dim 6144 393216 393216 98304 196608 196608 49152 98304 98304 98304 98304 24576 49152 49152 49152 49152 12288 4096 4096 4096 4096 128 128 128

Exp% 80 63.9 63.9 64.6 55.1 53.6 52.8 40.9 40.3 42.9 41.5 48.3 46.5 46.8 43.5 42.9 49.1 71.5 71.8 87.8 87.9 97.6 97.6 97.6

Methods
Open-access fMRI dataset. openneuro-ds0030853 (n = 37, mean age = 24)
- Imaging: 3-T EPI (multiband = 8x, TR = 1 s, 3-mm isovoxel, whole brain)
- Musical pieces: “happy” (2 min 48 s), ”sad-short” (4 min 16 s), ”sad-long” 

(8 min 35 s) in styles of movie soundtracks
- Continuous ratings: “Felt Emotionality” and “Enjoyment” after scanning
Feature extraction from music. High-dimensional embeddings (128–393k 
dimensions) were extracted from the 24 layers of the VGGish network. For every 
layer, the first 50 principal components explaining 40–98% of the total variance 
were used as predictors in linearized encoding models (Table 1).
Encoding models. Independent models were fit for each layer to predict either 
fMRI timeseries in each voxel or emotional ratings (both with lags of 4, 5, 6 s) as 
shown in Figure 1. Layer-wise profiles of prediction accuracies were inspected in:
- Regions-of-interest (ROIs): superior and middle temporal gyri (STG & MTG), 

inferior frontal gyrus (IFG), and medial prefrontal cortex (mPFC)1.
- Principal components (PCs): PCA was applied to the matrix of 24 prediction 

accuracies x #voxels, to identify topographies of the layer-wise profiles.
Representational gradient mapping. The spatial correspondence between the 
superficial-to-deep-layer and unimodal-to-transmodal gradients was tested.
- After surface projection, a best (argmax) and a centroid layer were determined 

in the profiles of prediction accuracies at each vertex (Figure 5a, b), which we 
call “representational gradients”.

- The correspondence with the functional gradient2 (recreated from the template 
data included in BrainSpace v0.1.10) (Figure 5c) was statistically tested using a 
geometrical permutation test (“spin-test”4), which involves 10,000 random 
rotations of spherical coordinates of the surface-mapped data.

- As negative control, best and centroid layers from encoding models with 
negative lags (-6, -5, -4 s) were used (Figure 5d, e).

Figure 2. Maximal prediction accuracy across all layers. Hipp, hippocampus; Thal, 
thalamus; Caud, caudate nucleus; Put, Putamen; GP, Globus pallidum; Amyg, amygdala; 
NAcc, Nucleus accumbens

Figure 4. Topographies and profiles of prediction accuracies of the first 3 PCs. (top) 
RGB values indicate scaled positive PC scores. (bottom) PC loadings highlight main 
contributions from superficial/middle layers to PC1, from deep layers to PC2, and from 
superficial layers to PC3. Abbreviations are the same as in Figure 2.
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