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Speech comprehension entails the neural mapping of the acoustic speech signal onto learned linguistic units. This acousto-linguistic 
transformation is bi-directional, whereby higher-level linguistic processes (e.g. semantics) modulate the acoustic analysis of individual 
linguistic units. Here, we investigated the cortical topography and linguistic modulation of the most fundamental linguistic unit, the 
phoneme. We presented natural speech and “phoneme quilts” (pseudo-randomly shuffled phonemes) in either a familiar (English) 
or unfamiliar (Korean) language to native English speakers while recording functional magnetic resonance imaging. This allowed us 
to dissociate the contribution of acoustic vs. linguistic processes toward phoneme analysis. We show that (i) the acoustic analysis of 
phonemes is modulated by linguistic analysis and (ii) that for this modulation, both of acoustic and phonetic information need to be 
incorporated. These results suggest that the linguistic modulation of cortical sensitivity to phoneme classes minimizes prediction error 
during natural speech perception, thereby aiding speech comprehension in challenging listening situations. 
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Introduction 
Speech comprehension relies on the neural mapping of the acous-
tic speech signal onto linguistic categories (Hickok and Poeppel 
2007; Poeppel et al. 2008; Kleinschmidt and Jaeger 2015). As such, 
the acoustic speech waveform that reaches our ears is converted 
into a neural code in the inner ear, which is then processed along 
the ascending auditory system and subsequently matched to 
learned linguistic categories (Hickok and Poeppel 2007; Friederici 
2011). Importantly, the percept of phonemes requires phonemic 
knowledge in a given language as the variance in acoustic realiza-
tion of speech sounds across utterances and speakers is too enor-
mous to be directly handled in the acoustic domain (Liberman 
et al. 1967). However, while this acousto-linguistic transformation 
is the basis for successful speech comprehension, many aspects 
of it still remain unknown. For example, previous studies, using 
synthesized monosyllabic stimuli, have localized neural corre-
lates of different categorization of identical speech sounds in 
the inferior frontal cortex and premotor cortical regions (Hasson 
et al. 2007; Kilian-Hütten et al. 2011; Lee et al. 2012; Preisig 
et al. 2022). However, it remains unclear how this knowledge 
translates to natural language processing. Here, we ask (i) whether 
the acousto-linguistic transformation is malleable to top-down 
linguistic information and (ii) whether we can dissociate the con-
tributions of acoustic and linguistic processing toward this trans-
formation. 

The phoneme is the smallest perceptual unit capable of deter-
mining the meaning of a word (e.g. the words pin and chin differ 

only with respect to their initial phonemes) (Stevens 2000). Of the 
upward of 100 phonemes in use world-wide, ∼44 phonemes make 
up the English language and these are categorized primarily based 
on articulatory features into four main classes: vowels, nasals 
and sonorants, plosives, fricatives, and affricates (Ladefoged 2001; 
Ladefoged and Johnstone 2015). Each phoneme class has charac-
teristic acoustic features; for example, while vowel sounds display 
a sustained period of harmonicity, plosives are characterized by a 
brief period of silence followed by a short broadband noise burst. 
Individual phonemes and the phoneme classes to which they 
belong have distinct temporal neural correlates: each phoneme 
class has a unique time-locked neural response characteristic, 
or phoneme-related potential (PRP; Khalighinejad et al. 2017; 
Overath and Lee 2017). The phoneme-class-specific PRPs likely 
reflect the neural analysis of their acoustic characteristics (e.g. 
timing of energy onset, harmonicity, etc.) in functionally separate 
parts of auditory cortex. 

In natural speech, phonemes do not occur in isolation, but 
instead form sequences to create syllables and words. The order 
in which phonemes can occur is governed by phonotactics, and 
is unique to each language (Chomsky and Halle 1965). Apart 
from learning to recognize the language-specific phonemes them-
selves (Cheour et al. 1998), phonotactics is one of the first sets of 
rules infants need to learn during language acquisition (Friederici 
and Wessels 1993; Jusczyk et al. 1994; Mattys and Jusczyk 2001). 
This may be achieved via learning the likelihood of phoneme 
transitions: for example, in English, certain phoneme transition
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probabilities are statistically unlikely (or even nonexistent, e.g. 
/dla/), while others are statistically more likely (e.g. /gla/). A 
similar principle is thought to be employed for syllable transitions, 
where statistically improbable syllable transitions can indicate 
between-word boundaries (Saffran et al. 1996). 

Thus, while the initial analysis of phonemes is based on their 
acoustic features (Mesgarani et al. 2014; Khalighinejad et al. 2017; 
Overath and Lee 2017; Yi et al. 2019), subsequent processing stages 
are likely more linguistic in nature, such as those identifying 
language-specific phonemes or phonotactics, or even higher-level 
processes underlying the analysis of syntax, semantics, or lexical 
access (Kutas and Hillyard 1983; Friederici et al. 1993; Kocagoncu 
et al. 2017). In the current study, we refer to the initial process 
as the “acoustic analysis” of phonemes and to the subsequent 
process as the “linguistic analysis” of phonemes. While decades 
of research have resulted in detailed speech/language models 
(Hickok and Poeppel 2007; Rauschecker and Scott 2009; Friederici 
2011), a clear demarcation between acoustic and linguistic analy-
ses (and their potential bi-directional interaction) that contribute 
toward speech comprehension has largely remained elusive. One 
reason for this is that, in everyday listening situations, acoustic 
and linguistic analyses are difficult to separate and likely interact, 
e.g. via top-down modulation of acoustic feature analysis by lin-
guistic processes (Anderson et al. 2003; Davis and Johnsrude 2007; 
Díaz et al. 2008). In addition, previous studies that investigated 
phoneme processing in naturalistic contexts (Mesgarani et al. 
2014; Khalighinejad et al. 2017; Daube et al. 2019; Gwilliams et al. 
2022) did so only in a familiar language: this approach is unable 
to dissociate the initial acoustic processes from the obligatory 
nature of linguistic processes that become engaged in a native, 
familiar language. 

In contrast, Overath and Lee (2017) were recently able to disso-
ciate the acoustic and linguistic processes underlying phoneme 
analysis by comparing PRPs in familiar vs. foreign languages. 
They used a variant of a novel sound quilting algorithm (Overath 
et al. 2015) to create “speech-based quilts” in which linguistic 
units (phoneme, syllable, word) were pseudo-randomly “stitched 
together,” or quilted to form a new stimulus. (We introduce the 
term “speech-based quilting” here to emphasize the fact that 
the duration of stitched segments depends on the duration of 
each individual linguistic unit [here, phonemes of different dura-
tion]; in contrast, in the previously employed “time-based quilt-
ing” approach (Overath et al. 2015; Overath and Paik 2021), the 
segment duration is fixed [in ms].) This paradigm allowed the 
comparison of an acoustic stimulus manipulation (speech-based 
quilting) in a familiar vs. foreign language: if the processing of 
phonemes is affected by the acoustic manipulation (increasing 
linguistic unit size of speech quilts) in a familiar language only, 
then this would suggest that linguistic analysis in the familiar 
language influenced the acoustic analysis of phonemes. Put dif-
ferently, if only minimal or no phonemic repertoire or phonotac-
tic rules are available to a listener (as is the case in a foreign 
language), the encoding of speech sounds themselves would be 
independent of their ordering (phonotactics) or linguistic unit 
size in which they appear. Using EEG to investigate the PRP for 
different phoneme classes (Khalighinejad et al. 2017), Overath 
and Lee (2017) found that vowels in particular are amenable to 
such top-down linguistic modulation. However, the limited spatial 
resolution of EEG did not allow inferences as to where in the 
auditory cortex (or beyond) such top-down modulation might 
originate, or act upon. 

Recent advances in functional magnetic resonance imaging 
(fMRI) time-series analysis have demonstrated that the neural 

activity to natural speech stimuli can be predicted from fast-
paced acoustic (e.g. envelope, spectrum), phonological, and 
semantic features via linearized encoding modeling (Huth et al. 
2016; De Heer et al. 2017). Inspired by this approach, the current 
study employed linearized encoding modeling of fMRI data in 
human cortex in an effort to reveal the separate encoding of 
acoustic and linguistic features of speech. Specifically, we used 
speech-based quilting (original speech vs. phoneme quilts) in 
familiar (English) vs. foreign (Korean) languages to dissociate 
the neural correlates of the acoustic and linguistic processes 
that contribute to the analysis of a fundamental linguistic unit, 
the phoneme. Importantly, as opposed to previous research from 
our group where the mean blood-oxygen-level-dependent (BOLD) 
levels of comparatively short stimuli were compared, the design 
of the current study allowed us to analyze prolonged time-locked 
dynamics in BOLD timeseries based on acoustic and linguistic 
features of naturalistic and manipulated speech stimuli. In 
addition, the novel quilting variant deliberately kept phonemic 
information largely intact, while previous studies (Overath et al. 
2015; Overath and Paik 2021) largely destroyed such information 
by placing segment boundaries at strictly regular time intervals 
(regardless of phonemic boundaries). This allows for a more 
precise understanding of the temporal dynamics underlying the 
transformation of acoustic to linguistic information. We show 
(i) that the acoustic analysis of phonemes is modulated by 
linguistic processes and (ii) that the interaction cannot be 
explained by solely acoustic or phonetic information. 

Materials and methods 
Overview 
Ten native English speakers without any knowledge of Korean 
listened to speech stimuli in 4 conditions (original speech or 
phoneme quilts, in English or Korean) during 3 sessions of fMRI 
scanning. Condition-specific linearized encoding models were 
trained to predict the fMRI time-series using 2 “Acoustic” predic-
tors (the broadband envelope and its first-order derivative with 
positive half-wave rectification) and 4 “Phonetic” predictors (the 
durations of each of the four main phoneme classes; i.e. vowels, 
nasals and approximants, plosives, fricatives and affricatives). 
Note that Multipenalty ridge regression models were optimized 
using a Bayesian optimizer for each predictor (i.e. 6 regularization 
hyperparameters per model). The prediction accuracy of full mod-
els with all predictors was calculated using Pearson’s correlation 
(r). The unique contribution of a certain predictor group (or a 
feature subspace, e.g. Daube et al. (2019)), was calculated using 
partial correlation (ρ) by regressing out the other predictor group 
(see Fig. 1 for an overview of the analysis). 

The raw data supporting the conclusions of this article will be 
made available by the authors upon request. In-house functions 
and scripts (MATLAB) to reproduce results in the manuscript 
as well as exemplar stimuli are publicly available on the Open 
Science Framework repository (https://osf.io/zgj3m/). 

Participants 
Ten native English speakers without any knowledge or expe-
rience in Korean participated in the current study (mean 
age = 24.0 ± 2.2 yr; 6 females). Eight participants volunteered 
in three sessions consisting of 8 runs each on separate days 
(intervals in days: mean = 8.5, standard deviation = 16.6, min = 1, 
max = 70) and two other participants in a single session each 
(6 and 8 runs, respectively), resulting in a total of 24 scanning 
sessions. This is on par with similar approaches that maximize
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Fig. 1. Linearized encoding analysis overview. Functional MRI data were acquired from 10 human participants while listening to unmanipulated or 
phoneme-scrambled speech stimuli in either English or Korean. From the speech waveform, acoustic features (cochleogram envelope and its first-order 
derivative with positive half-wave rectification) and phonetic features (the duration of four phoneme classes) were extracted and down-sampled at the 
fMRI sampling rate (1/1.2 Hz). Scale bars represent an fMRI sampling period (1.2 s). After preprocessing, the surface-mapped BOLD time series y(t) was  
predicted using regularized finite impulse response modeling. Multi-penalty regularization was optimized in a principal component space using the 
BADS optimizer. The cross-validated prediction accuracy was measured by Pearson correlation between observed and predicted BOLD time series that 
was back-projected onto the vertex space (see linearized encoding analysis section for details). 

intrasubject reliability over intrasubject variability in the data 
( Kay et al. 2008; Moerel et al. 2013; Naselaris et al. 2015; 
Norman-Haignere et al. 2015; Huth et al. 2016; Santoro et al. 
2017; Breedlove et al. 2020). 

All participants were recruited via the Brain Imaging and Anal-
ysis Center at Duke University Medical Center, NC, USA after 
safety screening for MRI (e.g. free of metal implants and claus-
trophobia). All reported to have normal hearing and no history 
or presence of neurological or psychiatric disorders. Informed 
written consent was obtained from all participants prior to the 
study in compliance with the protocols approved by the Duke 
University Health System Institutional Review Board. 

Stimuli 
Speech stimuli were created from recordings (44,100 Hz sampling 
rate, 16-bit precision) of four female bilingual (Korean and English) 
speakers reading textbooks in either language as in previous 
studies (Overath and Lee 2017; Overath and Paik 2021). Native 
English and Korean speakers judged the recordings as coming 
from native English and Korean speakers, respectively. Korean 
was chosen because of its dissimilarity to English: it shares no 
etymological roots with English and has different syntactic and 
phonetic structures (Sohn 2001). 

We used a modified version of the quilting algorithm (Overath 
and Lee 2017) where we pseudorandomized the order of 
phonemes (instead of set segment lengths). First, phonemes were 
extracted from the recordings and corresponding transcripts 
using the Penn Phonetic Lab Forced Aligner (https://babel.ling. 
upenn.edu/phonetics/old_website_2015/p2fa/index.html) (Yuan 
and Liberman 2008) for English speech and the Korean Phonetic 
Aligner (https://korean.utsc.utoronto.ca/kpa/; Yoon and Kang 
2013) for Korean speech. The phoneme segmentation output 
was a Praat TextGrid, which was then imported to MATLAB 

(https://github.com/bbTomas/mPraat) via the mPraat toolbox 
(Bořil and Skarnitzl 2016). The alignment was manually val-
idated by a native English and Korean speaker, respectively 
(Overath and Lee 2017; Overath and Paik 2021). The durations 
of phonemes in the recordings of natural speech in milliseconds 
were as follows (see Supplementary Fig. S5a for histograms): 
min = 4.3, max = 396.2, mean = 72.8, median = 63.8, standard 
deviation = 41.7, skewness = 1.2 in English (n = 10,514); min = 8.9, 
max = 308.3, mean = 71.9, median = 63.7, standard deviation = 36.0, 
skewness = 1.3 in Korean (n = 10,894). The average durations 
were similar between languages (0.9-ms longer in English, 
t[21406] = 1.67, P = 0.094), while the distributions were slightly 
different for that English had more instances of short (e.g. 
< 20 ms) phonemes (Kolmogorov–Smirnov statistic = 0.1413, 
P = 10−93). 

The phoneme segments were pseudorandomly rearranged to 
create novel phoneme quilts. For each stimulus, a random initial 
phoneme was chosen; subsequent phonemes were selected such 
that the acoustic change at the boundary was as close as possible 
to the acoustic change in the original source signal (using the 
L2-norm metric of an equivalent rectangular bandwidth [ERB]-
spaced cochleogram; see Overath et al. 2015). In addition, we 
applied the following exclusion criteria: (i) the phoneme duration 
needed to be at least 20 ms, (ii) two identical phonemes could 
not occur next to each other, and (iii) for a given phoneme, 
its subsequent phoneme could not be the same as in the 
original source signal. We used the pitch-synchronous overlap-
add algorithm (Moulines and Charpentier 1990) to further 
minimize abrupt changes in pitch at phoneme boundaries. Overall 
alterations due to the quilting algorithm were quantified by 
the Kullback–Leibler divergence (DKL) between L2-norm acoustic 
change distributions in the original source and the created 
phoneme quilt (median DKL = 0.6873 bits for English, 0.6004 bits
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for Korean; Wilcoxon rank sum equal median test: Z = 0.5913, 
P = 0.5543). In the phoneme quilts, the durations of phonemes in 
milliseconds were as follows (Supplementary Fig. S5b): min = 20.0, 
max = 351.0, mean = 72.3, median = 63.0, standard deviation = 39.4, 
skewness = 1.4 in English (n = 10,467); min = 20.0, max = 383.0, 
mean = 69.7, median = 60.0, standard deviation = 36.3, and skew-
ness = 1.5 in Korean (n = 11,213). There were slight differences 
between languages in average durations (2.6-ms longer in English, 
t[21678] = 5.08, P = 10−7) and distributions (KS-stat = 0.0657, 
P = 10−21); however, the mean difference of 2.6 ms is much 
shorter than the modeled cochlear integration time-window 
of 20 ms. 

As for the temporal modulation of the speech stimuli 
(Supplementary Fig. S3), the phoneme-based quilting decreased 
the temporal modulation energy at around 3–10 Hz in both 
languages. However, this reduction was greater in Korean than 
in English (max F[1, 23] = 41.09; min FDR-P = 0.0005; significant 
[FDR-P < 0.05] frequency bins = 3.9, 5.0, 5.1, 5.7, 6.4, 6.5, 6.6 Hz, in 
total 7 frequency bins; max effect size = 5.11 dB). This motivated 
us to include acoustic predictors in the encoding analysis (see 
Predictors section). 

For both languages (English and Korean), the 33-s-long stimuli 
in the 2 experimental conditions (Original and Phoneme Quilts) 
were created by concatenating six 5.5-s stimuli (24 unique 
exemplars per condition and language) without gaps. Subsequent 
5.5-s stimuli were either from the same or a different speaker 
(participants were asked to detect changes in the speaker, see 
Experimental procedure section). The overall sound intensity was 
normalized by equalizing the root-mean-square signal intensity 
across stimuli. At the beginning and the end of the 33-s stimuli, 
10-ms cosine ramps were applied to avoid abrupt intensity 
changes. 

Experimental procedure 
Functional MRI data were acquired while participants listened to 
the speech stimuli (either Original or Phoneme Quilts in either 
language) and performed a task to maintain attention to the 
stimuli. A 33-s trial consisted of six 5.5-s stimuli of multiple 
speakers in a given condition. Silent intertrial intervals were 
uniformly varied between 5.6 and 10.4 s (mean = 8 s). One run 
consisted of twelve 33-s trials, and one session consisted of eight 
8.5-min runs (except for 1 participant, who only completed 6 
runs). For one of the 8 participants with 3 sessions, one run was 
prematurely terminated after 9 of the 12 trials due to technical 
difficulties (the intact 9 trials from the run were still used in the 
analysis). In total, fMRI data corresponding to ∼203 min/partic-
ipant were obtained for the 8 participants with 3 full sessions 
(average of ∼174 min/participant for all 10 participants); this 
corresponds to ∼158 min of stimuli (excluding the ISI) per partic-
ipant with 3 full sessions (average of ∼137 min/participant for all 
10 participants). 

The stimulus presentation timing was controlled via the Psy-
chophysics Toolbox (v3.0.11 [http://psychtoolbox.org/]). Each run 
was triggered by the transistor-transistor-logic (TTL) signal from 
the MRI scanner mediated by a counter. Digital auditory signals 
at 44,100-Hz sampling rate and 16-bit precision from a Windows 
desktop were converted to analog signals by an external digital 
amplifier (Sony, Tokyo, Japan) and delivered to participants via 
MRI-compatible insert earphones (S14, Sensimetrics, MA, USA) 
at a comfortable listening level (∼75 dB SPL). Participants wore 
protective earmuffs on top of the earphones to further reduce 
acoustic noise from the MRI scanner. 

The task was to indicate a change in speaker (i.e. a 5.5-s 
stimulus of one speaker followed by a different speaker) via a 
button press on an MRI-compatible 4-button pad. Importantly, the 
participants could not know how many speaker changes occur 
as the number of changes also varied across 33-s trials (average 
speaker changes per trial = 3.5, between 1 and 4). The perfor-
mance was assessed via d-prime d′ = Φ−1 (Pr (Y|s))−Φ−1 (Pr (Y|n)), 
where Pr (Y|s) is the hit rate in “signal” trials, Pr (Y|n) is the false 
alarm rate in “noise” trials, and Φ−1 (•) is the inverse cumulative 
distribution function of the zero-mean, unit-variance Gaussian 
distribution (Macmillan and Kaplan 1985). Responses were clas-
sified as a hit if they occurred within 3 s following a change 
in speaker (and otherwise classified as false alarm). In the case 
of multiple responses within one 5.5-s stimulus segment, only 
the first response was counted. For extreme values of hit/false 
alarm rates (i.e. 0 or 1), an adjustment (i.e. adding 0.5/n to zero or 
subtracting 0.5/n from one for n trials) was made to avoid infinite 
values of d′ (Macmillan and Kaplan 1985). 

After each 33-s trial, participants received visual feedback 
about their performance (D′ = d′/ max d′, where  max  d′ is a 
d′ for a perfect performance, ranging between [−100%, 100%]) 
with a description (“POOR” for D′ < 0, “FAIR” for 0 ≤ D′ < 50%, 
“GOOD” for 50% ≤ D′ < 100%, “PERFECT!” for D′ = 100%) to encour-
age continued attention. While multiple button presses were 
discarded from computing d′, an alerting message was presented 
to the participants (“NO KEY PRESSED!” or “TOO MANY KEYS 
PRESSED!”) instead of the performance feedback when the 
button presses were too many (>5) or none (2.5% of total 2397 
trials from 9 participants; participant 1 was excluded from the 
d-prime analysis due to a technical fault of the in-scanner 
response device). The average D′ was 61.1% ± 38.4% points 
(overall: d′ = 1.14 ± 0.72; English-Original: 1.38 ± 0.23; English-
Quilts: 1.02 ± 0.48; Korean-Original: 1.25 ± 0.38; Korean-Quilts: 
0.95 ± 0.51). Repeated-measures ANOVA revealed a significant 
difference between original speech and phoneme quilts (η2 

p = 
0.70, F[1,8] = 16.37, P = 0.02; d′ = 1.28 ± 0.62 in original speech, 
d′ = 0.95 ± 0.77 in phoneme quilts) but neither between lan-
guages (η2 

p = 0.43, F[1, 8] = 5.46, P = 0.21; d′ = 1.17 ± 0.69 in English, 
d′ = 1.05 ± 0.74 in Korean) nor an interaction between quilting and 
language (η2 

p = 0.09, F[1, 8] = 0.68, P = 0.43). 

Image acquisition 
All images were acquired using a GE MR 750 3.0 Tesla scanner 
(General Electric, Milwaukee, WI, USA) with a 32-channel head coil 
system at the Duke University Hospital, NC, USA. For BOLD con-
trast, gradient-echo echo-planar imaging (GE-EPI) with a simul-
taneous multi-slice acceleration factor of 3 (i.e. 3 slices acquired 
in parallel with aliasing of FOV/3 shifts along the frequency-
encoding direction) was used (in-plane pixel size = 2 × 2 mm2, 
slice thickness = 2 mm, slice gap = 0 mm, FOV = 256 × 256 mm2, 
matrix size = 128 × 128, TE = 30 ms, flip angle = 73◦, TR = 1200 ms, 
and phase-encoding direction = posterior-to-anterior). A total of 
39 slices were acquired for each volume (13 slices per band) in 
an interleaved ascending sequence. At the beginning of a run, 
the volume was centered on the supratemporal plane, covering 
from the inferior colliculus to the inferior frontal gyrus. To correct 
for magnetic inhomogeneity artifacts, an additional GE-EPI image 
of 3 volumes with a reversed phase encoding direction (anterior-
to-posterior) was acquired after each run except for the first 
participant. 

For T1-weighted contrast, a magnetization prepared rapid gra-
dient echo (MP-RAGE) scan covering the whole-brain (in-plane 
pixel size = 1 × 1 mm2, slice thickness = 1 mm, slice gap = 0 mm,
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FOV = 256 mm, matrix size = 256 × 256, TE = 3.2 ms, flip angle = 8◦, 
TR = 2264 ms, and number of slices = 156) was acquired at the end 
of each session. 

Image processing 
Anatomical images 
T1-weighted images were segmented using SPM (SPM12; v7487 
[https://www.fil.ion.ucl.ac.uk/spm/]) to obtain tissue probability 
maps (spm.spatial.preproc), which were used for anatomical 
CompCor regressors (Behzadi et al. 2007). High-resolution cortical 
surfaces were fully automatically constructed using FreeSurfer 
(v6.0.0 [http://freesurfer.net/]) for surface-based analysis. 

Functional images 
The displacement due to inhomogeneity in the B0 field (i.e. 
susceptibility artifacts) was corrected using topup in FSL (v5.0.11 
[https://fsl.fmrib.ox.ac.uk/]) with the reversed phase-encoding 
images. The first 6 volumes (i.e. “dummy scans”) of each run 
were subsequently discarded from the analyses. Temporal 
and spatial realignments were achieved using SPM: the slices 
were first temporally aligned to the center of the TR using 
sinc-interpolation (spm.temporal.st), and then, the volumes 
were spatially aligned to the mean volume using 4-th degree 
B-spline interpolation (spm.spatial.realignunwarp). Since 
we used a multiband sequence (i.e. 3 slices were acquired 
simultaneously), the acquisition time of each slice and reference 
time were provided (instead of slice order) for the slice-timing 
correction. 

In order to suppress nonneural signal fluctuation, which is 
highly likely due to motion artifacts, we used the anatomical 
CompCor denoising technique (Behzadi et al. 2007). The spe-
cific steps were as follows: based on co-registered tissue seg-
mentation probability maps from SPM, voxels with >99% tissue 
probability were selected. Subsequently, on concatenated time 
series from the voxels, principal component analysis (PCA) was 
applied to extract principal components. Among the extracted 
components, the top 6 components with the highest eigenval-
ues were used as motion regressors in the general linear model 
(GLM) denoising procedure (see Surface-based GLM denoising 
section). 

Next, using FreeSurfer (Fischl 2012), the EPI volumes were 
projected onto individual cortical surfaces (∼150,000 vertices per 
hemisphere) at the middle depth of cortices by averaging samples 
at the 40%, 50%, and 60% of cortical thickness to avoid aliasing 
(mri_vol2surf in FreeSurfer). Surface-mapped functional data 
were normalized to “fsaverage6” surfaces (40,962 vertices per 
hemisphere) via spherical surface registration and then smoothed 
with a 2D Gaussian kernel with the full-width-at-half-maximum 
of 6 mm (i.e. 3 pixels in the EPI slices) via iterative nearest-
neighbor averaging (mri_surf2surf in FreeSurfer). 

Surface-based GLM denoising 
We applied a model-based denoising technique for task-
based fMRI data (GLMdenoise v1.4 [https://kendrickkay.net/ 
GLMdenoise/]) to the surface-mapped data (Kay et al. 2013). 
The algorithm extracts “noise” regressors from the data that 
would increase prediction accuracy in leave-one-run-out-cross-
validation. This is achieved by first defining “noise pool” vertices 
with negative R2 values for a given design matrix (i.e. vertices 
that are irrelevant to the task of interest), extracting principal 
components from the noise pool, and then determining an 
optimal number of components to remove as a minimal number 
where the improvement in cross-validation (CV) prediction 

decays. We used box-car functions to represent the 4 conditions 
in the design matrix. On average, 4.5 ± 2.1 noise regressors were 
regressed out. These improved reliability in estimation (mean over 
standard errors ratio of coefficients estimates across CV folds: 
median increase = 0.82; mean increase = 1.12) but only slightly 
increased predication accuracy (CV R2: median increase = 0.25% 
points; mean increase = 0.56% points). In addition to the noise 
regressors, the 4th order polynomial fits to slow drifts in BOLD 
time series, the 6 CompCor regressors, and the button-press 
regressors convoluted with a canonical HRF were regressed 
out from the residuals (i.e. prediction from the design matrix 
subtracted from the data). 

Linearized encoding analysis 
We predicted BOLD time series at each vertex in response to 
speech sounds using a linearized encoding model based on 
finite-impulse response (FIR) functions. Multiple lags were used 
to model the variable hemodynamic responses in different 
cortical areas (Huth et al. 2016; De Heer et al. 2017). In order to 
account for the collinearity of predictors representing acoustic 
and phonetic information, we used ridge regression to fit 
the model (i.e. FIR weights) and evaluated the prediction via 
CV. The procedures are explained in detail in the following 
subsections. 

Vertex selection 
For our interest in auditory and linguistic processing, we 
restricted our analysis to vertices in cortical regions that 
are previously known to be involved in speech processing so 
as to avoid unnecessary computations. Specifically, from the 
automatic parcellation based on the Desikan–Killiany cortical 
atlas (Desikan et al. 2006), the following 19 labels were included: 
“bankssts,” “caudalmiddlefrontal,” “inferiorparietal,” “inferiortem-
poral,” “lateralorbitofrontal,” “middletemporal,” “parsopercularis,” 
“parsorbitalis,” “parstriangularis,” “postcentral,” “precentral,” 
“rostralmiddlefrontal,” “superiorparietal,” “superiortemporal,” 
“supramarginal,” “frontalpole,” “temporalpole,” “transversetem-
poral,” and “insula.” The regions of interest are visualized in 
Supplementary Fig. S6. Out of the vertices in the regions of 
interest, vertices with BOLD time series (i.e. where the acquisition 
slices of the EPI sequence were positioned) were individually 
selected. These vertices slightly varied across participants due 
to the variability of head sizes, individual acquisition volumes 
at each session, and movements across runs during sessions. 
Supplementary Figure S7 shows the overlap of selected vertices 
across participants. On average, 28,297 ± 3,748 vertices were 
selected per participant. Note that, for the group-level statistical 
analysis, only vertices with data from all participants were 
included (18,818 vertices across both hemispheres). 

Predictors 
We included as predictors (i) the durations of phoneme classes 
(vowels, nasals and approximants, plosives, fricatives and 
affricatives; Vo, Na, Pl, Fr, respectively) and (ii) the speech 
envelope and its first-order derivative with positive half-wave 
rectification. For (i), the onset time and duration of each 
phoneme were determined and then grouped according to 
phoneme class (Ladefoged and Johnstone 2015; Shin 2015) (see  
Supplementary Table S1). Bigram transition probabilities between 
phoneme classes (Supplementary Fig. S8) were effectively altered 
by the quilting algorithm (Hotelling’s T2 between Original and 
Phoneme-quilts = 1563, P < 10−6 for English; Hotelling’s T2 = 1258, 
P < 10−6 for Korean). The durations of phoneme classes were
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modeled as box-car functions at the audio sampling rate 
(44.1 kHz) and were then down-sampled to 1/TR (1/1.2 = 0.833 Hz) 
following anti-aliasing low-pass filtering. To align with the slice 
timing correction applied to the BOLD time series, the resampled 
time points were also at the center of the TR. For (ii), the speech 
envelope was computed from a cochleogram (30 filters from 
20 to 10,000 Hz, equally spaced on an ERB scale) by raising 
the Hilbert envelope of the resulting cochleogram to a power 
of 0.3 to simulate cochlear compression and summing energy 
across all 30 ERB channels (McDermott and Simoncelli 2011; 
Overath et al. 2015). The speech envelope was then down-sampled 
as for the phoneme class durations. The rectified derivative 
was calculated following the down-sampling to reflect slow 
temporal modulations. It is important to clarify that the speech 
envelope and its derivative were used as parsimonious models 
to represent acoustic energy and temporal modulation (Daube 
et al. 2019), without suggesting that they represent “purely 
acoustic” characteristics. Due to the inherent covariance structure 
in natural speech, there is inevitably some overlap between 
acoustic and linguistic information. This overlap is particularly 
pronounced in familiar languages. However, for foreign languages, 
such as Korean speech to native English speakers as in the 
current study, a separation of acoustic and linguistic information 
is feasible. This has been demonstrated in a series of studies 
conducted by our group (Overath and Lee 2017; Overath and Paik 
2021). 

The down-sampled predictors showed moderate collinearity; 
the diagnostic metric of the collinearity, namely “condition index,” 
had an overall value of 27 (23–24 in English conditions and 41 
in Korean conditions) given a suggested criterion (>30) for a 
moderate multicollinearity (Belsley 1991). The condition index 
is a square root of the maximum eigenvalue divided by the 
minimum eigenvalue of the design matrix, quantifying the upper 
bound of the collinearity of the design matrix. The observed 
multicollinearity was mainly due to the high dependency 
between the vowel and the envelope predictors; the proportions 
of explained variance by the corresponding eigenvector (i.e. 
variance decomposition proportion) were 0.87 and 0.99 for the 
vowels and the envelope, respectively. The collinearity patterns 
were similar across conditions (Supplementary Fig. S9). The 
existence of multicollinearity motivated the use of a penalized 
regression. 

Regularized FIR modeling 
A FIR model was used to predict the BOLD time series at each 
vertex. In this approach, we modeled the neural response as a 
convolution of the predictors and a linear FIR filter, which is a 
commonly used approach in receptive field mapping of neural 
populations (Ringach et al. 1997; Wu et al. 2006). 

Consider a linear model for t time points and p predictors, 

y = Xβ + ε, (1)  

where y is a (t × 1) data vector (i.e. BOLD time series at a certain 
vertex), X is a

(
t × p

)
design matrix (i.e. a FIR model), β is a(

p × 1
)

unknown coefficient vector, and ε is a noise vector from 
a zero-mean Gaussian distribution with a serial correlation ε ∼ 
N

(
0, σ 2Ω

)
, where  Ω is a (t × t) unknown covariance matrix and σ 2 

is a scale factor. For the FIR modeling, the design matrix X consists 
of matrices of delayed features as 

X =
[
f1 f2 · · ·  fp

]
∗ H(n), 

for p features and n delays as implemented in a convolutional 
kernel H(n), while ∗ denotes the convolution operation. A Toeplitz 
matrix can be constructed for delayed features between time 
point t1and t2 with n delays for the ith feature as 

fi (t1, t2) ∗ H(n) = 

⎡ 

⎢⎢⎢⎢⎣ 

fi (t1) fi (t1 − 1) 
fi (t1 + 1) fi (t1) 

. . . fi (t1 − (n − 1)) 
. . . fi (t1 − n) 

... 
... 

fi (t2) fi (t2 − 1) 
. . .  

... 
. . .  fi (t2 − (n − 1)) 

⎤ 

⎥⎥⎥⎥⎦ , 

where fi(t) is the scalar value of the ith predictor at time point t. In  
the current study, we delayed the predictors by 1, . . . , 10 TRs (1.2, 
. . . , 12 s). Once unknown coefficients (or weights) are estimated, 
an inner product Xβ̂ is effectively a convolution of the ith feature 
and the estimated filter. 

While it is standard to pre-whiten the data when modeling 
autocorrelated noise for a Generalized Least Squares (GLS) solu-
tion (Aitken 1936), here we did not pre-whiten the model. This 
is because even with autocorrelated noise, an Ordinary Least 
Squares (OLSs) solution is still an unbiased estimator (only its 
efficiency is suboptimal) and because our goal was to estimate 
(predict) responses, not to infer significance. In particular, for 
the current data, GLS often yielded worse CV prediction than 
OLS. Therefore, we empirically determined not to pre-whiten the 
model. 

As we detected a strong collinearity among the predictors, we 
applied L2-norm regularization to solve Equation (1), which is 
known as a multipenalty ridge solution (Hoerl and Kennard 1970) 

β̂ (λ) = (
XT X + L

)−1 
XTy, (2)  

where β̂ (λ) is a vector of penalized estimates and L is a regular-
ization matrix as 

L = 

⎡ 

⎢⎢⎢⎢⎣ 

λ1I O 
O λ2I 

O 

O 
. . . O 
O λpI 

⎤ 

⎥⎥⎥⎥⎦ , 

with λi is a scalar regularization hyperparameter for the ith 
feature, Ii is the (n × n) identity matrix, and O is  a zero matrix in  
appropriate dimensions. The multipenalty ridge has been recently 
re-introduced to the neuroscience community as “banded ridge” 
(Nunez-Elizalde et al. 2019). 

Component-wise optimization and vertex-wise evaluation 
We used nested CV to optimize and evaluate the models (Hastie 
et al. 2009). To avoid information leakage driven by the stimulus-
evoked responses (Hasson et al. 2010; Kaufman et al. 2012), trials 
were partitioned in a way that there is no overlap of stimuli 
across partitions. The whole data were partitioned into 2 outer-
CV folds (training set and test set) to evaluate model performance 
on unseen data; the outer-CV training set is further partitioned 
into 2 inner-CV folds (training set and validation set) to optimize 
hyperparameters on independent data (Varoquaux et al. 2017). 

Optimizing multiple penalty terms can be a nontrivial task 
(van de Wiel et al. 2021). Grid search algorithm can be efficiently 
implemented using GLM: i.e. a single inversion of the regularized 
design covariance matrix (XT X + L) can be used for all vertex-
wise models for a particular search value. However, with the 
increasing number of penalty terms, the combinations of search
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values exponentially increase. Bayesian adaptive direct search 
(BADS) optimizer [https://github.com/lacerbi/bads] is known  to  
be robust in optimizing high-dimensional parameters (Acerbi and 
Ma 2017). But, as the BADS algorithm finds a unique optimization 
path in the parameter space, it runs through unique combinations 
of search values for each initialization. That is, separate inversions 
of differently regularized covariance matrices are required for 
each model; this process cannot be done simultaneously across 
all vertices (models) unlike the grid search using GLM. 

To reduce the number of models to optimize, we exploited the 
spatial dependency of fMRI and data dimensionality (i.e. much 
fewer time-points than vertices). Using PCA on temporally con-
catenated data, we transformed the vertex time-series into the 
component space as 

Z = YA, 

where Z is a
(
u × k

)
component time-series matrix, Y is a (u × v) 

vertex time-series matrix for u time-points (with all trials are tem-
porally concatenated) and v vertices; 28,297 ± 3,748 (on average), 
and A is a

(
v × k

)
demixing matrix for k components, which was 

determined for each subject to explain 99% of the total variance 
of the vertex time-series (1,486 ± 152 on average; 5.25% of the 
number of vertices). Instead of a vertex-wise model (Equation 2), 
we fitted a component-wise model as 

γ̂ (λ) = (
XT X + L

)−1 
XTz, (3)  

where γ is a coefficient vector for a component and z is a com-
ponent time-series for a given component. The BADS optimizer 
searched the exponents of base 10 for λs with absolute bounds 
of [−15, 15] and plausible bounds of [−10, 10]. Over 10 random 
initializations (uniformly sampled within the plausible bounds), 
a vector of exponents that minimizes the validation error (sum 
of squares) was chosen for each component. The optimization 
process took 79–102 h per outer-CV fold, depending on the number 
of sessions, on Intel Xeon Gold 6130 processors (32 threads). 

For evaluation, we predicted the component time-series for the 
outer-CV test set using the weights estimated from the outer-
CV training set: ẑte = Xteγ̂ tr (L∗), where subscripts “tr” and “te” 
indicate the outer-CV training set and test set, respectively, and 
L∗ denotes the optimal regularization matrix. Then, the predicted 
component time-series was transformed back into the vertex 
space: Ŷte = ẐteW, where  W = A−1 is a

(
k × v

)
mixing matrix. 

Finally, for each vertex, the prediction accuracy was calculated by 
Pearson’s correlation (r) between the observed time-series and the 
predicted time-series: r = corr

(
yte, ŷte

)
. 

To determine the uniquely explained variance by a particu-
lar set (subspace) of predictors (either the Acoustic or Phonetic 
subspace), vertex time-series were separately predicted based on 
each subspace as {

ŶA = XAγ̂ A (L) W 
ŶP = XPγ̂ P (L) W 

, 

where X =
[

XA XP

]
and γ =

[
γ A γ P

]
. Note  that  the  sum  

of separate predictions is equal to the full model prediction Ŷ = 
ŶA + ŶP. Then, partial correlation (ρ) was calculated as Pearson’s 
correlation between residuals after regressing out one prediction 
from the data and the other prediction as ρA = corr

(
y, ŷA; ŷP

)
and 

ρP = corr
(
y, ŷP; ŷA

)
. 

Statistical inference 
Statistical inference was computed via a nonparametric paired 
t-test using a cluster-based permutation test at group-level (Maris 

and Oostenveld 2007). Specifically, r values of both models were 
calculated for each participant (n = 10), and then, the difference 
between two models at each vertex was calculated. Next, the 
signs of differences across participants were flipped over all 
possible permutations (210 = 1,024) to form a null distribution. 
One-tailed P-values were computed from the null distribution for 
our directed hypotheses (e.g. English > Korean, Original > Quilts). 
Note that the inference was computed at the group-level, not 
the subject-level. Vertex-wise multiple comparisons correction 
was applied via a cluster-based permutation test as implemented 
in ft_statistics_montecarlo in FieldTrip (v20180903) (http:// 
www.fieldtriptoolbox.org/) with a custom modification of clus-
terstat for a faster cluster identification through parallelization. 
In an earlier fMRI methodological study (Eklund et al. 2016), it 
was shown that a liberal cluster-forming threshold (CFT) in a 
cluster-level inference based on the random field theory resulted 
in a severely inflated family-wise error rate (FWER), whereas the 
permutation test showed a consistently proper control of the 
FWER regardless of the choice of a CFT. A recent study formally 
showed that a CFT in permutation tests does not affect the FWER, 
but only the sensitivity (Maris 2019). Thus, in the current study, 
clusters were defined by an arbitrary threshold of the α-level of 
0.05 (for vertex-wise P-values) to improve the sensitivity, and the 
cluster-wise P-values are thresholded at the α-level of 0.005 to 
control the FWER at 0.005. 

Results 
Linguistic processing interacts with acoustic 
processing in the left superior temporal sulcus 
We first investigated whether the encoding models could replicate 
our previous findings of mean BOLD activity (Overath et al. 
2015; Overath and Paik 2021). Figure 2 displays the differences 
in Pearson correlation of full models between conditions (see 
Supplementary Fig. S1 for a rendering on uninflated surfaces). 
The original speech stimuli evoked BOLD time-series that are 
better explained by the encoding models than the quilted stimuli 
in the superior temporal sulci (STSs) and the anterior superior 
temporal gyri, bilaterally (Fig. 2a; max  t[9] = 11.22, min cluster-
P < 0.001, max cluster size = 1,078 vertices, max Δr = 0.2302). The 
native language (English) as compared with the foreign language 
(Korean) showed similar but larger clusters over the lateral 
convexity of the STG (i.e. Te3; Morosan et al. (2005)), extending 
to the planum temporale in the left hemisphere (Fig. 2b; max  
t[9] = 10.12, min cluster-P < 0.001, max cluster size = 1,697 vertices, 
max Δr = 0.1913). An interaction in the expected direction (i.e. 
a greater difference for [Original > Quilts] in English than in 
Korean) was found in the superior portion of the left STS (i.e. Te4; 
Fig. 2c; max  t[9] = 7.98, min cluster-P = 0.002, max cluster size = 484 
vertices, max Δr = 0.1147), suggesting that the change of neural 
encoding as a function of the acoustic context was modulated by 
linguistic knowledge in this area. 

Neither acoustic nor phonetic predictors can 
exclusively explain the interaction between 
acoustic and linguistic processes 
After establishing the interaction of acoustic and linguistic 
processes, we further examined whether the difference between 
original and quilted speech in the native language was driven by 
processes at the acoustic or phonetic level. An additional motiva-
tion for this analysis to separate acoustic and phonetic contribu-
tions was to account for the fact that the phoneme-based quilting 
procedure had slightly different effects on the envelope modu-
lation spectrum in the two languages (Supplementary Fig. S3).
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Fig. 2. Comparisons of prediction accuracies between conditions: 
a) main effect of quilting, original > quilts; b) main effect of lan-
guage, English > Korean; and c) interaction between quilting and 
language, [English-original > English-quilts] > [Korean-original > Korean-
quilts]. Thick black contours mark significant clusters (cluster-P ≤ 0.005). 
Curvatures of the cortical surface are displayed in brighter (convex) and 
darker (concave) grays with thin black isocontours at the curvature of 
zero. Colored histograms of the r differences are displayed below each 
hemisphere. See Supplementary Fig. S2 for comparisons at the subject-
level. 

To this end, we calculated the partial correlation between the 
predicted and observed fMRI timeseries based on only one group 
of predictors (Acoustic or Phonetic) while regressing out the 
predicted timeseries based on the other group of predictors. 
The partial correlation thus quantifies the prediction based 
on the unique information in one predictor group in relation 
to the information that is common in both predictor groups. 
Finding an effect (of e.g. quilting) in the partial correlations would 
indicate that the linguistic modulation (i.e. the difference between 
original and quilted sounds in the native language as compared 
with the foreign language) is supported only by the unique 
characteristics of either Acoustic or Phonetic predictor groups 
that is orthogonal to common information of both predictor 
groups. 

We tested whether the main effects and interaction identified 
in Fig. 2 can be explained by unique contributions of either of 
the predictor groups. For this, we averaged the partial correlation 
values in vertices within each cluster identified in Fig. 2. This 
ROI-based comparison reveals that only for the main effect of 
Language, the partial correlation of the Acoustic predictors was 

significantly positive (max t[9] = 5.60, min P < 0.001, max diff 
ρ = 0.0921; Fig. 3b). That is, the residual STG/STS activity was 
better explained by the Acoustic predictors, but not by Phonetic 
predictors, for the native language (English) compared with the 
foreign language (Korean). For the main effect of Quilting (Fig. 3a) 
and the interaction (Fig. 3c), neither of the predictor groups 
showed significant positive partial correlation differences (min 
P = 0.142), suggesting that the interaction shown in the full models 
in Fig. 2 cannot be explained by unique information of either of 
the two predictor groups but is instead due to common informa-
tion to both of them (see whole-cortex analyses in Supplementary 
Fig. S4). 

Discussion 
The phoneme is the fundamental linguistic unit that determines 
the meaning of words. We show that the four main phoneme 
classes, as well as broadband envelopes, are encoded in fMRI data 
acquired while listening to continuous speech signals. The acous-
tic processes underlying this phoneme analysis are modulated by 
linguistic analysis, whereby the acoustic manipulation (original 
speech vs. phoneme quilts) affected speech encoding more in a 
familiar language than in a foreign language. The results also 
revealed that this modulation cannot be explained uniquely by 
either acoustic or phonetic predictors. 

Linguistic modulation of acoustic analysis of 
phonemes 
Our primary aim was to dissociate acoustic from linguistic pro-
cesses, which would enable us to determine their interaction, 
i.e. whether linguistic processes modulate the acoustic analysis 
of phonemes. To this end, we found that the acoustic manip-
ulation (phoneme quilts vs. natural speech) had a larger effect 
on phoneme processing in a familiar language (English) than 
in a foreign language (Korean). Since the acoustic manipulation 
was the same for both languages, this suggests that the greater 
difference between acoustic contexts was due to linguistic pro-
cesses becoming engaged in a familiar language (however, see 
also Contributions of acoustic and phonetic features section for 
further partitioning by predictor groups). Linguistic processes 
such as phonotactic, syntactic, as well as semantic analyses might 
therefore modulate the acoustic processing of phonemes, e.g. 
via hierarchical predictive coding or minimizing prediction errors 
through top-down modulation (Rao and Ballard 1999; Friston and 
Kiebel 2009). To our knowledge, this is the first demonstration 
of such linguistic modulation of a fundamental linguistic unit 
using fMRI. However, these results align well with Overath and 
Lee (2017), who found similar evidence for top-down linguistic 
modulation of phonemic analysis using a different recording 
modality (EEG). 

Perhaps, the best-known example of the modulatory influence 
of linguistic information is that of phonemic restoration (Warren 
1970; Samuel 1981). In phonemic restoration, a phoneme is still 
subjectively “perceived” even if it is masked or replaced com-
pletely by noise. This is often interpreted as an advantageous 
adaptation to speech perception in noisy environments, where it 
is common for interrupting or masking sounds to last only for 
a few tens or hundreds of milliseconds (i.e. on a temporal scale 
that is commensurate with that of phonemes). The top-down 
predictive nature of this phenomenon is further highlighted by 
the fact that, if the acoustic information is ambiguous, a “best 
guess” phoneme is perceived (Samuel 1987; Leonard et al. 2016). In 
fact, there is a wealth of evidence for such restorative processes in
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Fig. 3. ROI-based partial correlation differences for contrasts a) main effect of quilting (original > quilts), b) main effect of language (English > Korean), 
and c) interaction between quilting and language ([English-original > English-quilts] > [Korean-original > Korean-quilts]). On the cortical surface models, 
clusters are highlighted in dark gray. ROI-averaged partial correlations are shown in violin plots for the acoustic (light gray) and phonetic (dark gray) 
predictor groups; open circles mark medians, horizontal lines mark means, and vertical gray thick lines mark the first and third quartiles. ∗: Bonferroni-
corrected P < 0.005. 

speech perception, for example from studies using noise-vocoded 
stimuli ( Shannon et al. 1995; Scott et al. 2000; Narain et al. 2003; 
Giraud et al. 2004; Obleser et al. 2008; Wild et al. 2012) or other  
methods to distort the speech signal (Davis et al. 2011; Eckert et al. 
2016), while the most common explanation for restorative effects 
refers to top-down, predictive (Friston and Kiebel 2009) linguistic 
processes. 

The locus of phonemic restoration, i.e. the region in which lin-
guistic modulation is strongest, was recently shown to be situated 
in bilateral STG, likely due to receiving modulatory signals from 
left IFG (Leonard et al. 2016). This aligns remarkably well with 
the current study, where we found the strongest effect of lin-
guistic modulation also along STG, albeit with a left-hemispheric 
dominance. The STG is a reasonable locus for such linguistic 
modulation, since it represents an intermediary processing stage 
in the language network that receives bottom-up information 
from primary auditory cortex and PT, as well as top-down infor-
mation from higher-order auditory and frontal regions (Hickok 
and Poeppel 2007; Friederici 2009, 2011; Rauschecker and Scott 
2009). For example, the analysis of spectral shape (a necessary 
computation to differentiate between the formant structures of 
different vowels) relies on bottom-up changes in effective connec-
tivity between HG to PT, as well as PT to STG/STS regions (Warren 
et al. 2005; Kumar et al. 2007). In contrast, top-down signals from 
frontal cortex (e.g. left IFG) have been shown to modulate speech 
processing in auditory cortex (Sohoglu et al. 2012; Park et al. 2015; 
Cope et al. 2017; Overath and Paik 2021). 

In the domain of electrophysiological measurements of speech 
perception, there is currently disagreement as to the extent 
that neural indices (such as speech-envelope entrainment, or 
phoneme encoding) can be interpreted as markers of linguistic 
processes that are necessary for speech comprehension (Luo 
and Poeppel 2007; Ding and Simon 2013; Di Liberto et al. 2015; 
Vanthornhout et al. 2018), or whether a more parsimonious 
explanation of these indices is that they reflect the analysis of 
characteristic acoustic properties of the speech signal (Howard 
and Poeppel 2010; Millman et al. 2015; Baltzell et al. 2017; Daube 
et al. 2019; Verschueren et al. 2021). Our study is able to shed new 
light on this controversy by directly comparing the encoding of 
acoustic properties of phonemes in either a familiar language or 
in a foreign language, in which no higher-level linguistic analysis 
takes place. 

We should note that the current study did not measure linguis-
tic processes explicitly. For example, participants did not perform 
a linguistic task (e.g. speech comprehension) but were simply 
asked to detect a change in speaker, a task that is largely orthog-
onal to linguistic processing (see also Overath and Paik (2021) 
for a similar task). Therefore, we interpret the linguistic modula-
tion of phoneme class analysis as obligatory linguistic processes 
that become engaged as soon as familiar linguistic templates 
(e.g. phonotactics, syntax, lexicon, semantics) are detected in the 
signal. Future studies will need to determine whether, and to 
what extent, these obligatory linguistic processes for phoneme 
analysis are malleable to various tasks that engage specific lin-
guistic processes. For example, the neural processing of acoustic 
features in speech sounds has been shown to be enhanced or 
sharpened if they are task-relevant, attended to vs. ignored, or 
primed (Mesgarani and Chang 2012; Holdgraf et al. 2016; Leonard 
et al. 2016; Rutten et al. 2019), and similar processes might become 
engaged for phoneme class encoding. 

Contributions of acoustic and phonetic features 
Another major advantage of the current study is the neural encod-
ing analysis to delineate unique contributions of the overlapping 
information embedded in speech stimuli. The partial correlation 
analyses revealed a unique contribution of the acoustic features 
to the stronger neural encoding for the native language as com-
pared with a foreign language (i.e. the main effect of language). 
Speech envelope (in particular onsets) encoding in the lateral 
STG has been shown from ECoG data with a native language 
(Oganian and Chang 2019). As shown in the whole-cortex analyses 
(Supplementary Fig. S4), this effect was strongest in the bilateral 
early auditory areas (HG/PT). This is in line with a recent find-
ing that showed stronger speech envelope encoding in a native 
speaker group compared with a nonnative speaker group with a 
low proficiency (Liberto et al. 2021). 

However, no unique contribution of the acoustic or phonetic 
features was found for either the main effect of quilting or 
the interaction of language and quilting. This suggests that the 
stronger encoding of all features for the original than quilted 
speech samples (Fig. 2b) and their interaction with language 
(i.e. more so for English than for Korean stimuli; Fig. 2c) are  
driven by the shared information between the acoustic and
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phonetic predictors. A moderate multicollinearity between 
some predictors was indeed detected (see Statistical inference 
section), presumably due to the similarity between the speech 
envelope and vowel predictors. Note, though, that each predictor 
was individually optimized using Bayesian optimizer to avoid 
suboptimal regularization for individual predictors; that is, it is 
likely that all individual predictors were optimally regularized 
in the present analyses. Taken together, the current fMRI data 
suggest that the shared information between envelope and vowel 
predictors supported the modulation of the encoding strength in 
the acoustic and linguistic contexts. 

Encoding of envelope and phoneme classes in 
the BOLD time series 
One of our preliminary aims was to confirm that rapid acoustic 
and phonetic features can be shown to be encoded in a hemody-
namic response that is approximately two orders of magnitude 
slower (tens of milliseconds vs. seconds). Encoding of these fea-
tures had previously been demonstrated using electro-/magneto-
physiological methods, which afford commensurate millisecond 
temporal resolution (Di Liberto et al. 2015; Khalighinejad et al. 
2017; Yi et al. 2019; Brodbeck et al. 2022; Gwilliams et al. 2022; 
Heilbron et al. 2022). Nevertheless, the novel use of linearized 
ridge-regression modeling of fMRI BOLD signal time series was 
recently employed to successfully (and separably) reveal the 
encoding of acoustic and phonetic features in a familiar language: 
De Heer et al. (2017) collected fMRI data while presenting 
continuous, natural speech, and were able to reveal that the 
acoustic speech envelope predicted the BOLD time series best 
in HG, whereas articulatory phonetic features were predicted 
most accurately in higher-level auditory cortex such as STG. 
More recently, an fMRI study demonstrated a cortical hierarchy 
at a much longer time-scale (word-level) where the parameters 
(forecast distance and forecast depth) of a large language 
model (GPT-2) were mapped from the HG to STG, and then 
IFG (Caucheteux and King 2022). The current study is in broad 
agreement with these findings: while both the acoustic and 
phonetic features were encoded over the language network, the 
acoustic features showed greater encoding in the supratemporal 
regions (HG/PT). 

More broadly, our study confirms that neural responses to rapid 
speech features, which are temporally integrated over several 
hundreds of milliseconds in the BOLD time series, can be revealed 
using linearized encoding modeling. Such models take advantage 
of the spatially separated functional organization of auditory 
cortex, for example with respect to prominent acoustic features 
such as frequency, spectro-temporal modulations, or spectral 
bandwidth (Rauschecker and Tian 2004; Saenz and Langers 2014; 
Santoro et al. 2014; Baumann et al. 2015; Moerel et al. 2018). This 
should encourage the future use of more naturalistic stimulus 
paradigms that allow the investigation of the complex dynamics 
of linguistic processes (Hamilton and Huth 2020), as well as other 
higher-order processes such as music perception (Kim 2022). 

Modulation of acoustic and linguistic contexts 
The analyses of the two factors Quilting and Language were 
motivated by previous studies that investigated the processing of 
temporal speech structure using segment-based speech quilting. 
In particular, these studies showed sensitivity in STS to temporal 
speech structure in either only a foreign language (Overath et al. 
2015) or both native and foreign languages (Overath and Paik 
2021), which is comparable to a main effect of Quilting here. 
In addition, activity in left IFG revealed an interaction between 

Quilting and Language and increased as a function of temporal 
speech structure only in the familiar language (Overath and Paik 
2021). In the current study, Quilting and Language both had 
greater prediction accuracies in left STS, while their interaction in 
the same area was due to larger prediction accuracy differences 
for the Original vs. Quilts contrast in English vs. Korean. 

For successful speech comprehension, the temporal dynamics 
of speech necessitate analyses at multiple scales that are com-
mensurate with the average durations of phonemes, syllables, 
words, sentences, etc. This temporal hierarchy is thought to be 
reflected in a cortical processing hierarchy in which the neuronal 
temporal window of integration (Theunissen and Miller 1995) 
increases from primary auditory cortex via nonprimary auditory 
cortex to frontal cortex (e.g. Lerner et al. 2011; though see Blank 
and Fedorenko 2020; Norman-Haignere et al. 2022 for a recent 
counterargument against such a hierarchy). The current results 
of greater prediction accuracy in STS as a function of Quilting 
largely support this view. A novel finding is the left-hemispheric 
lateralization. However, it is possible that this was driven by the 
interaction between Quilting and Language. 

It is important to note that the segment-based quilting in pre-
vious studies disrupted the speech signal to a larger degree than 
the speech-based quilting employed here. The shortest segment 
length (30 ms) used in the previous studies, together with their 
placement irrespective of linguistic units, likely resulted in no 
phonemes being left fully intact in the resulting speech quilt. In 
contrast, the current speech-based quilting procedure preserved 
the phonemes (though likely still disrupted co-articulation cues). 

Limitations and future directions 
One potential limitation of this study is the possibility of par-
ticipants attending more to intelligible stimuli (original speech 
in a familiar language) than unintelligible stimuli (all other con-
ditions). While behavioral performance was better for original 
speech compared with quilted speech, it did not differ between 
languages or was affected differentially by language, which sug-
gests that participants’ task engagement was not differentially 
affected. In addition, it should be noted that this issue is not 
unique to the current study design, and is in fact a common 
challenge in speech studies that use unintelligible control stimuli. 
Here, we used an unfamiliar language to manipulate access to 
linguistic knowledge. While previous research has employed syn-
thetic approaches to parametrically manipulate intelligibility by 
degrading spectral structures (Blesser 1972; Davis et al. 2005), slow 
temporal modulation (Ghitza 2012), or fine temporal structure 
(Lorenzi et al. 2006), these methods can introduce acoustic arti-
facts that distinguish them from natural human speech even at 
the acoustic level. In contrast, our study, along with previous work 
from our group, used speech recordings from bilingual speakers in 
2 widely distant languages. This approach ensured that the natu-
ral acoustic features and speaker-specific acoustic characteristics 
remained highly similar between languages. We believe that unal-
tered foreign speech would have generated more attention than 
acoustically modified unintelligible nonspeech sounds. However, 
we acknowledge the possibility that the modulation of bottom-
up attention from a familiar language may have influenced the 
current findings to some degree. 

Another methodological limitation of the current study is 
the use of only two acoustic conditions (original and phoneme-
quilts), which differs from previous studies conducted by our 
group. The rationale behind this design was to reduce sampling 
variance by minimizing the number of conditions while increasing 
the data points per condition. However, this design choice may
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present a challenge when disentangling phonetic processing from 
higher-level linguistic processing beyond the phoneme-level (e.g. 
syllables, words, sentences), which may highly correlate with 
lower-level processing. While this was not the primary focus of 
the current study, it is important to emphasize the caveat of an 
encoding model, which entails that it does not necessarily rule 
out the possibility of unmodeled variables driving the observed 
prediction (Naselaris et al. 2011). However, this challenge is not 
applicable to the unfamiliar language, as listeners did not have 
access to higher-level linguistic features. That is, if the heightened 
prediction in the original condition was solely driven by 
unmodelled higher-level linguistic features, this effect would not 
have been observed in the unfamiliar language. On the contrary, 
the main effect of quilting was found both in English and Korean 
conditions when compared separately (Supplementary Fig. S10). 
This suggests that the current findings are unlikely to be driven 
solely by any unmodelled higher-level linguistic features. This is 
also in agreement with results reported in Overath et al. (2015) 
and Overath and Lee (2017), which showed an effect of increasing 
temporal structure (akin to the original speech vs. phoneme-quilt 
comparison here) in STS in unfamiliar languages. 

The current study makes a number of predictions for future 
studies investigating the acousto-linguistic transformation 
of speech. We show evidence for linguistic modulation of a 
fundamental linguistic unit, the phoneme, in native English 
speakers when listening to English speech, but not when listening 
to a foreign language for which participants had no linguistic 
repertoire. Therefore, while it is unlikely that the current results 
are specific to English phonemes, future studies should confirm 
this interaction, for example in native Korean participants who 
have no knowledge of English. Similarly, people who are perfectly 
bilingual in English and Korean should show evidence for 
linguistic modulation in both languages as a function of quilting, 
while those for whom both languages are foreign should not. 
Alternatively, a modulation of this interaction by the proficiency 
level of English among Korean participants might be explored. 
However, it is important to note that examining between-subject 
effects like this would require a higher statistical power to ensure 
a reliable estimate (Marek et al. 2022). 

In addition, the fact that the linguistic modulation of the acous-
tic speech signal operates at an intermediate stage of linguistic 
analysis likely reflects its significance: if linguistic modulation 
starts at the level of phonemes, its ability to impact a later 
word processing stage is conceivably greater than if linguistic 
modulation only started at the word processing stage. Given 
the highly predictive nature of speech processing (see Linguistic 
modulation of acoustic analysis of phonemes section above), 
such modulation might be particularly helpful in situations in 
which the speech signal is compromised (e.g. in noisy conditions 
such as in a restaurant or bar). People with hearing loss (e.g. 
presbycusis) are a clinical population that is known to struggle in 
such situations, even with the help of hearing aids (Moore 1996; 
Shinn-Cunningham and Best 2008). It is therefore possible that 
(at least) one reason for their exacerbated speech comprehension 
difficulties in noisy situations is that the linguistic modulation of 
phonemes has deteriorated, thereby reducing the effectiveness 
of predictive speech processes. A similar argument might be 
made for people suffering from “hidden hearing loss”: i.e. hearing 
difficulties without detectable deficits in routine audiometry tests 
(Kujawa and Liberman 2009; Ruggles et al. 2011). We predict that 
linguistic modulation of phoneme analysis is reduced in these 
populations (particularly in situations with background noise) 
and might thus serve as a clinical marker. 

Conclusions 
In conclusion, the current study demonstrates that individual 
phoneme classes derived from continuous speech signals are 
encoded in the BOLD signal time series. In particular, by using 
a design that dissociates acoustic from linguistic processes, we 
show that the acoustic processing of a fundamental linguistic 
unit, the phoneme, is modulated by linguistic analysis. The fact 
that this modulation operates at an intermediate stage likely 
enhances its ability to impact subsequent, higher-level processing 
stages, and as such might represent an important mechanism 
that facilitates speech comprehension in challenging listening 
situations. 
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