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Abstract

Changes in modulation rate are important cues for parsing acoustic signals, such as speech. We 

parametrically controlled modulation rate via the correlation coefficient (r) of amplitude spectra 

across fixed frequency channels between adjacent time frames: broadband modulation spectra are 

biased towards slow modulate rates with increasing r, and vice versa. By concatenating segments 

with different r, acoustic changes of various directions (e.g. changes from low to high correlation 

coefficients, that is, random-to-correlated, or vice versa) and sizes (e.g. changes from low to high, 

or from medium to high correlation coefficients) can be obtained. Participants listened to sound 

blocks and detected changes in correlation while MEG was recorded. Evoked responses to 

changes in correlation demonstrated 1) an asymmetric representation of change direction: random-

to-correlated changes produced a prominent evoked field around 180 ms, while correlated-to-

random changes evoked an earlier response with peaks at around 70 ms and 120 ms, whose 

topographies resemble those of the canonical P50m and N100m responses, respectively; and 2) a 

highly non-linear representation of correlation structure, whereby even small changes involving 

segments with a high correlation coefficient were much more salient than relatively large changes 

that did not involve segments with high correlation coefficients. Induced responses revealed phase 

tracking in the delta and theta frequency bands for the high correlation stimuli. The results confirm 

a high sensitivity for low modulation rates in human auditory cortex, both in terms of their 

representation and their segregation from other modulation rates.
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Graphical Abstract

Changes in modulation rate are important cues for parsing acoustic signals, such as speech. We 

parametrically controlled broadband modulation rates and recorded neural responses to changes in 

broadband modulation rate using MEG. We find asymmetric and non-linear evoked responses to 

various modulation rate changes, with particularly high sensitivity for changes that involve low 

modulation rates.
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Introduction

The detection of changes in the acoustic environment is one of the most important tasks of 

the auditory system. Temporal modulations are one of the most prominent features of natural 

sounds; as such, different modulation rates can be powerful segmentation cues for acoustic 

signals, enabling listeners to extract relevant parts of the acoustic information. For example, 

different aspects of speech signals can be attributed to specific modulation rates: the rate of 

syllables is about an order of magnitude slower (~4–7 Hz) than that of some phonemes 

(~30–50 Hz) (Pickett, 1999). However, little is known about the distinct neural mechanisms 

that code transitions between modulation rates at the level of cortex (e.g. their temporal, 

topographic, and anatomic characteristics). Furthermore, the representation of distinct 

modulation rates is likely sub-served by different mechanisms than those segregating 

between modulation rates. That is, while there is evidence for periodotopic organization in 

the midbrain (Baumann et al., 2011) and primary auditory cortex (Baumann et al., 2015), 

segregating different modulation rates seems to recruit comparative mechanisms beyond 

primary auditory cortex (Chait et al., 2007; Chait et al., 2008; Overath et al., 2010; Barascud 

et al., 2016; Teng et al., 2017; Teng et al., 2018). Here we investigate the temporal neural 

correlates of changes between modulation rates in human auditory cortex using 

magnetoencephalography (MEG).

Past studies investigating auditory change detection have drawn on the large body of work 

on the mismatch negativity (MMN), which is the M/EEG evoked response to rare sounds 

(deviants) that are acoustically different from other, frequently presented sounds (standards). 

The acoustic attributes driving mismatch responses range from local stimulus features (e.g. 

the loudness of a deviant compared to a standard stimulus) to relatively abstract patterns 
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(e.g. sequences of words or tones that can function as standards or deviants) (e.g.van Zuijen 

et al., 2004; Winkler et al., 2006; Näätänen et al., 2007).

A slightly different approach builds on the assumption that the auditory system represents 

local stimulus statistics and distinguishes between the emergence or disappearance of 

‘objects’ in an auditory stream. Previous studies have demonstrated distinct psychoacoustic 

processing asymmetries, both in terms of discrimination between acoustic tokens (Cusack et 
al., 2004), as well as in terms of the neural correlates of acoustic changes (Chait et al., 2007; 

Chait et al., 2008). For example, previous studies (Chait et al., 2007; Chait et al., 2008; 

Barascud et al., 2016; Southwell et al., 2017) showed that order-to-disorder (i.e. 

disappearing pattern) and disorder-to-order (emerging pattern) transitions within rapid 

streams of brief tone pips have distinct temporal and topographic characteristics. More 

recently, it was found that repeated patterns of tone pips induce tonic (sustained) neural 

activity explaining asymmetrical transitional effects (Barascud et al., 2016; Southwell et al., 
2017). Similarly, transitions in the coherence of acoustic textures, another form of a transient 

or acoustic edge, are more salient when the transition reflects a change to more coherence 

than vice versa (Overath et al., 2010).

In addition to the above studies, several studies have demonstrated a compelling sensitivity 

to different modulation rates at the level of human auditory cortex across different 

techniques (Giraud et al., 2000; Harms & Melcher, 2003; Boemio et al., 2005; Harms et al., 
2005; Overath et al., 2008; Overath et al., 2012; Wang et al., 2012; Teng et al., 2017). This is 

similar in non-human species, where the preferred rate for which phase-locking or 

synchronized firing occurs decreases as one ascends the neuraxis (Lu et al., 2001b; Bartlett 

& Wang, 2007; Bendor & Wang, 2007).

The analysis of induced neural responses, such as phase coherence (Luo & Poeppel, 2007; 

Howard & Poeppel, 2010), has proven a promising tool within the M/EEG literature to 

disambiguate the representation of individual acoustic signals at the neural level; this is 

beyond the scope of more classical evoked response analyses, which rely on the averaging of 

multiple presentations of a given stimulus or stimulus class (thereby neglecting phase 

information). By virtue of its nature, amplitude modulations are ideally suited for 

investigating neural phase tracking, or neural entrainment (Galambos et al., 1981; Ross et 
al., 2005; Wang et al., 2012). Thus, phase coherence, or phase tracking, can be used as a 

stimulus-specific neural marker that distinguishes between signals of different modulation 

rates (Gross, 2014).

Experimental designs that allow both analysis techniques (evoked and induced response 

analyses) enable the investigation of both the neural representation and segregation of 

specific aspects of acoustic signals, such as modulation rate. To this end, the current MEG 

study employed a design similar to that of Overath et al. (2010), whereby changes in 

modulation rate (assessed via complex correlation structure, as in Overath et al., 2008) can 

be investigated via evoked responses, while the representation of individual modulation rates 

can be elucidated via response analyses such as phase coherence.
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We hypothesized — based on the assumption that auditory cortex is sensitive to ongoing 

stimulus statistics — that we would observe similar processing asymmetries as described 

previously (Chait et al., 2007; Chait et al., 2008; Overath et al., 2010; Barascud et al., 2016), 

such that transitions to lower correlation coefficients (correlated-to-random) would reveal 

different response characteristics from transitions to higher correlation coefficients (random-

to-correlated). Furthermore, we expected to observe a dissociation with respect to phase 

coherence, such that sounds with high correlation coefficients, i.e. slow temporal 

modulations, would reveal strong phase coherence in low frequency bands (e.g. delta and 

theta bands), while the processing of sounds with low correlation coefficients, i.e. fast 

temporal modulations, would be characterized by phase coherence in higher frequency 

bands (e.g. the low gamma band).

Materials & Methods

Participants

Sixteen participants (2 left-handed, mean age: 23, range: 18–33, 8 females) took part in the 

study. Data from three participants had to be excluded because of excessive data artifacts or 

chance task performance during the MEG recording, leaving a total of 13 participants (2 

left-handed, mean age: 24, range: 18–33, 5 females) for the main analysis. Participants 

provided written informed consent in accordance with the New York University Committee 

on Activities involving Human Subjects.

Stimuli

The stimuli were based on Overath et al. (Overath et al., 2008), and a visual example is 

depicted in Figure 1. All stimuli were created digitally using MATLAB 

(RRID:SCR_001622; http://www.mathworks.com) software at a sampling rate of 44.1 kHz 

and 16-bit resolution. Each sound consisted of 20 sinusoids pseudorandomly chosen from a 

pool of 101 logarithmically spaced frequencies between 246–4435 Hz. The particular 

parameters were chosen so as to approximate respective features in naturally occurring 

sounds, which typically have complex spectra with multiple frequencies present. The 

passband (246–4435 Hz) covers the acoustic range of maximal acoustic sensitivity in the 

human auditory system, and the number and spacing of frequencies within this pool are a 

result of this range.

The amplitude spectrum was defined for each 20 ms frame such that the correlation from 

one frame to the next was operationalized as the Pearson correlation r:

r x,y = 1
n

∑i = 1
n xi − x − yi − y

SxSy

where x is a vector with the amplitude values (in dB) of the 20 frequency components in a 

frame, y is a vector with amplitude values (in dB) of the 20 frequency components in the 

consecutive frame, n is the number of frequencies, sx and sy represent the standard 

deviations of x and y, and x− and y− are the arithmetic means of x and y, respectively. Thus, 

the amplitude spectrum of a given sound varied with a specified correlation coefficient r 

Kim et al. Page 4

Eur J Neurosci. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mathworks.com/


between the 20 ms segments. Importantly, the mean amplitude (65 dB) and standard 

deviation (SD = 15) were identical for each frequency component in a given sound and 

across correlation levels. Linear spline interpolation amplitude transitions were applied 

between frames in the time domain so that sounds were continuous and did not have any 

sudden amplitude transients. This was applied in order to render the sounds more similar to 

most ethological sounds; however, some speech sounds like plosives or consonant-vowel 

transitions do display amplitude discontinuities (Rogers, 2000).

Note that modulation rate here is not defined in its more common form (i.e. in terms of the 

rate of sinusoidal amplitude modulation of a single carrier), but with respect to the overall 

amplitude modulation across multiple carriers, as specified by the Pearson correlation of 

amplitude spectra between successive 20 ms frames. Therefore, the correlation coefficient is 

related to the spectra of the modulation rates (Figure 1D): the higher the correlation 

coefficient, the more the spectrum of the envelope is biased towards to the slower 

modulation rates, and vice versa.

We used four different values for r = 0, 0.5, 0.8, 0.95. These are based on their roughly linear 

relationship with respect to (i) Fisher’s z-transform (Fisher, 1915) of the parameter values 

(Z(r) = 0, 0.55, 1.1, 1.83) and (ii) log-log slopes of their corresponding envelope modulation 

spectra (1–20 Hz; −0.07, 0.34, −0.60, −0.84). We predicted that this linear relationship 

(roughly equal step size between r-values) would result in roughly linearly spaced 

behavioral and neural response characteristics.

For a sound with a set correlation between adjacent time frames (e.g. r = 0.95), the 

correlation between a given frame and subsequent frames decays exponentially with the 

number of time frames (or lag). The window length of this decay process is defined as the 

duration (in ms) at which the correlation between any two time-frames reaches a minimum 

reference value (r = 0.2), which was determined for its indistinguishability from r = 0 as 

found in our previous study (Overath et al., 2008), from its initial value r between adjacent 

time frames. The window length is relevant to a “temporal integration window” of non-

primary auditory neurons proposed in Poeppel (2003): a neuron should only respond to 

sounds whose duration of correlation matches or surpasses its temporal integration window. 

The window length is calculated by the following equation:

w 0.2 = d ln 0.2
ln r ,

where w is window length for a reference value of r = 0.2, d is frame duration, and ln is the 

natural logarithm to the base e. For the parameters used in the MEG study (r = 0, 0.5, 0.8, 

0.95), the corresponding w(0.2) are 0 ms, 46 ms, 144 ms, and 628 ms.

Audio files of exemplar stimuli are available at https://osf.io/frdqb/.

Experimental design

Prior to the MEG recordings, participants were familiarized with the stimuli and then 

performed two-interval two-alternative forced-choice (2I2AFC) psychophysics with r = 0 as 
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the reference sound and one of six target sounds (r = 0, 0.2, 0.4, 0.6, 0.8, 0.95). The target 

and reference sounds were sequentially presented in a random order. Participants were to 

indicate which of the two sounds was more correlated or had slower amplitude changes. 

Stimuli were 2 seconds long and were different exemplars from the ones subsequently used 

in the MEG experiment. Psychophysics ensured that participants were able to distinguish a 

highly correlated sound from the reference sound; participants needed to reach at least 90% 

correct performance for the strongest correlation (r = 0.95) to be included in the MEG study.

The MEG study used four levels of correlation: r = 0, 0.5, 0.8, 0.95. The four levels yielded 

four possible absolute change sizes between adjacent sound segments:

Change0: 0↔0, 0.5↔0.5, 0.8↔0.8, 0.95↔0.95

Change1: 0↔0.5, 0.5↔0.8, 0.8↔0.95

Change2: 0↔0.8, 0.5↔0.95

Change3: 0↔0.95

The bidirectional arrows indicate that, for example, a change from r = 0 to r = 0.95 has the 

same absolute change size as a change from r = 0.95 to r = 0.

So as to enable an investigation of the representation of correlation structure via phase 

coherence (Luo & Poeppel, 2007), each level of correlation was represented by 3 unique 

correlation structures (i.e. 3 unique exemplars for each of the 4 levels). This resulted in 12 (3 

exemplars × 4 levels) unique correlation structures with 150 frames, where each 

corresponding sound segment was 3 s long (150 frames with 20 ms frame lengths). The 12 

unique correlation structures were concatenated in a pseudo-randomized order to yield a 36 s 

long sound block (see Figure 1).

There were 40 sound blocks in total. In each of four sessions, 10 sound blocks were 

presented in a pseudo-randomized order. The frequency composition of each sound block 

was selected randomly but was unique and stayed fixed within a sound block. Thus, each 

correlation structure was presented 40 times overall (once in each sound block), but each 

time within the context of a different frequency composition.

The task of participants was to press a response button whenever they perceived a change in 

correlation, irrespective of the direction of that change (i.e. whether it was from less 

correlated to more correlated, or vice versa). A time window for a valid response was 

defined as 100–1500 ms after transition. Furthermore, to minimize eye-related artifacts 

during trials, participants were asked to close their eyes during the sound blocks, open them 

during the 10-sec gaps between sound blocks, and close them in time for the beginning of 

the next sound block.

Data acquisition and analysis

During the MEG recording, the stimuli were delivered using Etymotic ER3A insert 

earphones calibrated to have a flat frequency response in the MEG set-up. The signals were 
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presented at a loudness level of approximately 75 dB. Data were acquired with a 160-

channel whole-head MEG system (KIT, Kanazawa, Japan). Three reference channels 

recorded environmental noise, while the remaining 157 channels recorded neuromagnetic 

activity. The data were sampled at 1000 Hz and filtered online using a 1–200 Hz passband 

filter with a notch at 60 Hz.

Preprocessing

The external noise in the data was suppressed by removing principle components that are 

correlated with reference channels using the time-shift principal component analysis 

algorithm (TSPCA) (de Cheveigné & Simon, 2007). Subsequently, sensor-specific noise 

(i.e., uncorrelated with neighboring sensors) was suppressed using sensor noise suppression 

(SNS) with 10 neighbors defined (de Cheveigné & Simon, 2008).

To suppress physiological artifacts, independent component analysis (ICA) was applied to 

the whole data after an offline bandpass filtering of 1–60 Hz using a two-pass 4th-order 

Butterworth infinite impulse response (IIR) filter and down-sampling at 200 Hz using 

FieldTrip (RRID: SCR_004849; http://www.fieldtriptoolbox.org/) (Oostenveld et al., 2011). 

ICs with stereotypical topology, spectrum, and peak-aligned responses that are associated to 

cardiac artifacts (mostly two) and eye movement artifacts (mostly two to three) were 

manually labeled and the whole data was reconstructed without those ICs.

Evoked response analysis

To extract a multivariate component that is most reliably evoked by the stimuli, we used 

denoising source separation (DSS) (de Cheveigne & Simon, 2008). For each epoch we first 

subtracted the mean of the baseline period [−.2 0] sec. Then, only the post-stimulus epoch 

[0, 0.5] sec was fed into the DSS algorithm for each condition (e.g., 0 → 0, 0 → 0.5, 0 → 
0.8, 0 → 0.95, …). Only the first DSS component (the most prominently evoked, “DSS1”) 

was used in the further analysis. Since the sign (or polarity) of DSS components is 

determined arbitrarily in conjunction with their spatial weights, the sign of a given DSS 

component needs to be adjusted for meaningful comparisons across conditions and 

participants. This is typically achieved by taking an averaged time-locked MEG response as 

a reference and flipping signs of DSS components to maximize correlation coefficients with 

the reference. However, certain transitions (e.g., 0 → 0.5) evoked no discernible peaks in 

some subjects, preventing the meaningful choice of a fixed sign. Thus, we instead took the 

absolute value of the DSS time course, which allows a comparison across conditions and 

participants. This is similar to root-mean-square (RMS) approaches for MEG timeseries data 

(Ding et al., 2015).

Induced response analysis

We used two related but complementary measures of phase coherence across trials: cross-

trial phase coherence (CTPC) and inter-trial correlation (ITC).

CTPC at time t and frequency f is given by:
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CTPC t, f = 1
N ∑

n = 1

N
cosθ n, t, f

2
+ 1

N ∑
n = 1

N
sinθ n, t, f

2

where θ n, t, f is a phase angle at time t, frequency f, trial n and N is the total number of 

trials (Luo & Poeppel, 2007). When all phases are consistent across trials, the CTPC is one. 

When all phases are completely random, the CTPC is zero. To estimate phases, a Morlet 

wavelet transform was applied to epochs between [−1, 4] sec with a 50-ms step over 24 

loglinear frequency bins from 1 to 60 Hz. The number of cycles (which controls Gaussian 

taper width) linearly increased from 3 to 11 to control temporal smoothness across 

frequency bins. We computed CTPC within each exemplar and averaged for each correlation 

level (i.e., within-CTPC). We also computed CTPC across different exemplars of a given 

correlation level (i.e., across-CTPC) to estimate chance level CTPC. To match the number of 

trials, an equal number of trials was drawn from each exemplar for 100 times then averaged.

ITC is given by the average Pearson correlation of filtered signals (Ding & Simon, 2013) as:

ITC f = 1
N N − 1 ∑

i ≠ j
corr yi, f, yj, f

where f is a frequency bin, N is the total number of trials, corr is Pearson product, and yi, f is 

the i-th trial MEG signal filtered at the frequency bin f. For five frequency bands (δ, 1–3 Hz; 

θ, 4–7 Hz; α, 8–12 Hz; β, 13–29 Hz; γ, 30–60 Hz), a sinc-windowed finite impulse 

response filter was applied to the whole data to avoid edge artifacts. Similar to CTPC, 

within-ITC was computed from trials of the same exemplar and across-ITC was computed 

from trials with different exemplars (but same correlation level). ITC measures phase 

coherence across trials similarly to CTPC, but since it does not use Fourier transform, it is 

computationally more efficient.

Statistical inference

For behavioral measures and evoked responses, we tested the effect of conditions and 

transitions using different two-way repeated-measures analysis of variance (ANOVA) 

models. Specifically, in the first model, which is faithful to the 4-by-4 design, we modeled 

the Previous Level and the Current Level as two within factors. The main effect of the 

Previous Level is an averaged difference in evoked responses across conditions with 

different previous correlation levels (i.e., differences between 0 → 0.95 vs. 0.5 → 0.95, vs. 

0.8 → 0.95, …) whereas the main effect of the Current Level is an averaged difference 

across conditions with different current correlation levels (i.e., differences between 0 → 0 

vs. 0 → 0.5, vs. 0 → 0.8, …).

In the second model, which is based on our assumption that the detection mechanism is 

sensitive to amount of change in r, we modeled the Direction (positive or negative) and 

Absolute Step Size (1, 2, or 3) of changes as two within factors. For this, behavioral and 

neuronal measures in the 4-by-4 cells were averaged according to the change direction and 

step size to fit into a 2-by-3 matrix. For example, a measure for the first cell (“Positive” x 
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“1”) is an average of three change conditions (0 → 0.5, 0.5 → 0.8, and 0.8 → 0.95). 

Measures from Change0 conditions without changes (e.g., 0 → 0, 0.5 → 0.5) were not 

included in this model. It should be noted that averaging across conditions here is only 

intended to compare conditions diagonally (in the 4-by-4 design matrix), which is not 

possible in the first model. We will discuss differences between conditions with the same 

Direction and Absolute Step Size later.

For induced responses, we used one-sample T-tests to test if phase tracking (CTPC) is 

significant in the respective conditions and a one-way repeated-measures ANOVA with the 

Current Level as a within-subjects factor to test if phase tracking is different across 

correlation levels.

To perform statistical inference with multiple comparison correction based on cluster-based 

permutation (Maris & Oostenveld, 2007), we used Minimum Norm Estimation (MNE)-

Python (RRID:SCR_005972; https://martinos.org/mne/) (Gramfort et al., 2013). 100,000 

randomizations (or full permutations, whichever was smaller) were performed to compute p-

values. A cluster-forming threshold was determined based on a parametric, uncorrected p-

value of 0.001 and extent-threshold of 10 ms. Family-wise significance level was set at p < 

0.05, and Bonferroni correction was further applied where necessary.

Results

Behavioral results

The behavioral data in the MEG study were analyzed in terms of d’ performance (Macmillan 

& Kaplan, 1985), where responses to Change0 transitions served as the false alarm rate. The 

data revealed that changes involving the highest correlation coefficient (r = 0.95) were most 

salient (Figure 2). This was confirmed by a repeated-measures ANOVA model on 12 

measures (off-diagonal elements only) with factors of Previous Level and Current Level. 

Main effects of Previous Level (F 1.06, 12.70 = 67.82, ηp2 = 0.849, p < 10−14) and Current 

Levels (F 1.06, 12.70 = 117.54, ηp2 = 0.907, p < 10−17) were highly significant after 

Greenhouse-Geisser correction, and they were driven by r = 0.95 (Bonferroni-corrected p < 

10−5 for all cases of post-hoc pairwise comparison for the main effects). The interaction 

between Previous Level and Current Level was also significant 

(F 3.17, 38.12 = 283.76, ηp2 = 0.959, p < 10−70), which was due to differences between 

conditions with the same Current Level but different Previous Levels, or vice versa.

Furthermore, the average d’ in the 4-by-4 matrix was symmetric to the diagonal, suggesting 

little effect of the direction of changes. This was tested by a repeated measures ANOVA 

model with factors Direction (positive, negative) and Absolute Step Size (1, 2, 3). There was 

no main effect of Direction (F 0.42, 5.05 = 2.93, ηp2 = 0.196, p < 0.113), but a significant 

main effect of Absolute Step Size (F 0.84, 10.09 = 586.60, ηp2 = 0.979, p < 10−12) and 

interaction (F 0.84, 10.09 = 8.96, ηp2 = 0.427, p = 0.002). Post-hoc comparisons revealed that 

this was driven by step sizes involving r = 0.95. Thus, contrary to our prediction, transitions 

with the same nominal step size (e.g., 0 → 0.5 vs. 0.8 → 0.95) did not have the same 
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behavioral salience. One-way repeated-measures ANOVA models that were tested on each 

step size revealed that there were significant differences within each set of conditions with 

the same nominal step size (F 1.40, 21.10 = 96.99, ηp2 = 0.866, p < 10−13 for Step size = −1; 

F 1.54, 23.23 = 60.48, ηp2 = 0.930, p < 10−13 for Step size = +1; 

F 1, 15 = 30.33, ηp2 = 0.803, p < 10−5 for Step size = −2; 

F 1, 15 = 61.36, ηp2 = 0.804, p < 10−5 for Step size = +2; all Bonferroni corrected).

Evoked MEG responses

Figure 3 shows the absolute time course of the DSS1 component for conditions with positive 

and negative changes in correlation, respectively. Similar to the behavioral results, only 

those positive changes involving r = 0.95 showed distinctive effects. However, in contrast to 

the behavioral results, negative changes involving r = 0.95 evoked less prominent and 

qualitatively different responses.

Separate two-way repeated measures ANOVAs modeling either the correlation levels 

(Previous Level x Current Level) or the transitions (Direction x Absolute Step) found 

significant main effects and interactions (Figure 4 and 5). The significant effect at around 

150–200 ms was attributed to the prominent response to positive changes to r = 0.95, as 

revealed by post-hoc pairwise comparisons. This effect drove multiple significant effects 

including the main effect of Current Level, its interaction with the Previous Level, the 

positive main effect of Direction (the only possible change direction to r = 0.95 is positive), 

and the main effect of Absolute Step, and their interaction. The averaged projection of DSS1 

components showed a topography that is similar to an M100 (Figure 4B and 5B). Also, a 

later effect at around 260 ms (Figure 4C), which was also driven by positive changes to r = 

0.95 (especially by 0→0.95 and 0.5→0.95), showed a topography that is similar to an M200 

(reversed polarity of an M100, suggesting opposite source orientations).

The other significant effects at around 70 ms and 125 ms were related to a negative change 

from r = 0.95 (main effect of Previous Level, negative main effect of Direction). The 

averaged projection of DSS1 components at respective time points showed a topography that 

is similar to an M50-M100 complex (Figure 4A and 5A).

Figure 3 also shows that, among the positive changes to r = 0.95 (i.e., 0 → 0.95, 0.5 → 0.9, 

0.8 → 0.95), the response peak latencies decreased and the peak magnitudes increased with 

increasing step size; repeated measures linear models (modeling step size as a linear within-

factor) confirmed that the decreasing latency and increasing peak magnitude relationships 

are significant (F 0.83, 9.97 = 1823.70, ηp2 = 0.993, p < 10−13 for latencies; 

F 0.83, 9.97 = 125.04, ηp2 = 0.912, p < 10−6 for magnitudes; Figure 6).

Induced MEG responses

The CTPC differences (across-CTPC subtracted from within-CTPC; phase dissimilarity 

plots) averaged across subjects are shown in Figure 7. Increased CTPC was found mostly in 

delta and theta bands around the auditory cortices at various time points. Averaged into the 

five frequency bands over the whole trial (i.e., [0, 3] sec), the CTPC differences were tested 
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against zero using a one-sample T-test. For the number of subjects (n = 13), full 

permutations of flipping signs (213 = 8,192) were used to compute p-values. After 

Bonferroni correction for the number of conditions, significant clusters were found for r = 

0.8 (θ-band, right auditory channels, T[12] = 5.98, corrected p = 0.004) and r = 0.95 (θ-

band, left auditory cortex, T[12] = 6.38, corrected p = 0.011; δ-band, left auditory cortex, 

T[12] = 5.94, corrected p = 0.049; Figure 8). However, no significant difference across 

correlation levels was found when tested using a one-way repeated-measure ANOVA 

(uncorrected p > 0.01). As a follow-up analysis on the significant CTPC in the theta band, 

we tested a linear dependency of the CTPC difference on correlation levels averaged across 

all channels using a repeated-measures regression model; this revealed a significant increase 

of the CTPC difference over the correlation coefficients (F[1,12] = 39.35, p < 10−4; Figure 

9).

The ITC differences (across-ITC subtracted from within-ITC) averaged across subjects are 

shown in Figure 10. Similar to CTPC, positive ITC differences were found in channels 

around the auditory cortices in the delta and theta bands. But when tested with a one-sample 

T-test, no significant cluster was found for any time intervals (corrected p > 0.05). A one-

way repeated-measure ANOVA did not reveal any effect of correlation level either 

(uncorrected p > 0.01).

Discussion

The present study investigated neural signatures for the segregation and representation of 

amplitude correlation structure, or complex temporal modulation rate, in acoustic signals. 

With respect to segregation, the results revealed asymmetric and non-linear responses to 

changes in the amplitude correlation structure of acoustic signals. Specifically, random-to-

correlated and correlated-to-random transitions displayed distinct neural signatures: random-

to-correlated transitions produced a prominent evoked response at around 180 ms, while 

correlated-to-random transitions evoked an earlier response at around 70 ms, which 

resemble a canonical P50m-N100m complex. Further, the random-to-correlated transitions 

demonstrated a highly non-linear neural response, whereby even relatively small correlation 

transitions to the largest correlation coefficient used (r = 0.95) were much more salient than 

relatively large correlation transitions that did not involve a segment with r = 0.95. The 

analysis of induced responses, reflecting the representation of correlation structure, revealed 

phase tracking in the theta and delta frequency bands for the high correlations (r = 0.8 and 

0.95), but no significant phase tracking in the gamma band for stimuli with no correlation (r 
= 0).

Evoked responses

The results are in broad agreement with a number of studies showing high sensitivity to slow 

modulation rates in human auditory cortex (Giraud et al., 2000; Harms & Melcher, 2003; 

Boemio et al., 2005; Harms et al., 2005; Overath et al., 2008; Overath et al., 2012; Wang et 
al., 2012; Teng et al., 2018). In the present study, modulation rate within a channel or 

frequency was controlled via amplitude correlations between adjacent time frames within 

long sounds; large correlation coefficients produced slow temporal variations, while 
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temporal modulation rate increased as the correlation coefficient decreased. Here, the sounds 

with the largest correlation coefficient (or slowest temporal modulations) were those that 

participants were most sensitive to.

In the present data, dissociable responses were observed for random-to-correlated and 

correlated-to-random transitions with respect to latency (70 ms vs. 180 ms) and topography 

(P50m-like vs. N100m-like). The topography of evoked responses suggests that the 

dominant neural sources are located near the superior temporal cortices. Based on the fact 

that response latency is indicative of processing stage along the auditory neuraxis 

(Krumbholz et al., 2007; Chait et al., 2008), the major source of the earlier response at 70 

ms is likely in primary auditory cortex (e.g. medial Heschl’s gyrus), whereas the later 

response at 180 ms is most likely generated in non-primary auditory cortices such as lateral 

Heschl’s gyrus and planum temporale (Lütkenhöner & Steinsträter, 1998; Godey et al., 
2001; Yvert et al., 2005). Critically, the differential latencies of the evoked responses suggest 

that distinctive underlying mechanisms are involved in the detection of the appearance and 

disappearance of highly correlated modulation structure, which can be regarded as a form of 

auditory object or auditory stream.

The N1m-like response to random-to-correlated transitions in the current study has 

previously been found in transitions from randomly varying to constant tones (Chait et al., 
2007), regularly alternating or repeating tone-pips (Chait et al., 2008; Barascud et al., 2016), 

or the appearance of frequency components in a complex auditory scene (Sohoglu & Chait, 

2016a; b; Teki et al., 2016). It has been suggested that the N1m-like response occurs for 

disorder-to-order type “temporal edges” (Chait et al., 2008). In the current study, the bias of 

modulation spectra was perceived non-linearly: transitions to r = 0.95 evoked a strong 

N100m-like response, whereas transitions to r = 0.8 evoked no significant response (see 

Figure 4C). This suggests a distinctive sensitivity to slow modulations in the non-primary 

auditory cortex that segregates r = 0.95 from other conditions. Moreover, it also suggests that 

there may exist a threshold for determining ‘temporal regularity’ within spectrotemporal 

modulation structure, and that this threshold lies between r = 0.8 and r = 0.95. Future studies 

will need to determine the precise location of such a threshold for detecting temporal 

regularity.

The latency of the N1m-like change response was previously found to be a function of the 

time required to infer regularity within the acoustic stimulus features (Chait et al., 2007). In 

our data, the peak latency for a transition to r = 0.95 increased with an increasing correlation 

level of the preceding segment (i.e., decreasing contrast). This effect seems to be related to 

the window length of exponential decay within the stimuli (see Materials and Methods): the 

longer the window length in the previous segment, the more time is needed to determine a 

change in modulation structure.

The P50m-like response to correlated-to-random transitions showed similar latency and 

topography to the reported response at around 50 ms after the regular-to-random or constant-

to-random transitions (i.e., disappearance of regularity) in previous studies (Chait et al., 
2007; Chait et al., 2008; Barascud et al., 2016; Sohoglu & Chait, 2016a; b). It is possible 

that the P50m-like component is due to the sharp, sudden change in energy within a channel 
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at the onset of an r=0 stimulus segment (Hari et al., 1987; Pantev et al., 1996; Pratt et al., 
2008). However, a P50m-like response to correlated-to-uncorrelated transitions was also 

observed in the absence of sudden increases in energy of specific channels where the 

interaural correlation of wideband noise was manipulated (Chait et al., 2005). Thus, the 

P50m-like response to the correlated-to-random transition in the current data seems more 

attributable to the disappearance of regularity of correlated acoustic structure (Winkler et al., 
2009).

Behavioral vs. neural measures

The behavioral data show that performance for random-to-correlated transitions was better 

than for correlated-to-random transitions, and the evoked responses showed an even more 

pronounced asymmetry (stronger response to the random-to-correlated transitions). This 

asymmetry in neural responses suggests the involvement of distinctive mechanisms for 

detecting the appearance or disappearance of correlated modulation structure.

Previously, using a similar paradigm, Overath et al. (2010) found that acoustic changes 

across which spectrotemporal coherence increased were behaviorally more salient than those 

changes across which coherence decreased, and that this perceptual asymmetry was reflected 

in stronger responses in posterior temporal regions bilaterally. Similarly, a study that 

manipulated interaural correlation of noise (Chait et al., 2005) also showed asymmetrical 

behavioral performance (difficulty in detecting decorrelation). More recent studies reveal 

both behavioral and neural asymmetries in the detection of appearing or disappearing 

regularity of tone-pips in statistically regular or irregular contexts (Cervantes Constantino et 
al., 2012; Sohoglu & Chait, 2016b; a). In particular, Cervantes Constantino et al. (2012) 

demonstrated through various manipulations that the detection of an appearance of certain 

frequency components in a complex auditory scene is seemingly automatic (near-perfect 

performance level that was barely affected by the number of objects in the auditory scene), 

while this was not the case for detecting the disappearance of certain frequency components. 

The authors noted that detecting a disappearance of regularity is more computationally 

demanding because it requires the constant matching of expected inputs and responding to 

unexpected inputs (Cervantes Constantino et al., 2012). Indeed, the maintenance of sound 

statistics is associated with increased phasic activity in the superior temporal gyrus 

(Barascud et al., 2016; Southwell et al., 2017), which might reflect enhanced inhibition, or 

an increased gain for specific target features, or other cognitive processes related to learning 

and working memory (Southwell et al., 2017).

We should note that our initial prediction regarding the perceptual equidistance between 

“steps” (e.g., 0 → 0.5, 0.5 → 0.95, 0.8 → 0.95, belonging to the same step size and 

direction) was not supported by the behavioral and neural data, instead suggesting that 

perceptual distances were not equal. However, particularly for the evoked neural responses, 

the effect of absolute step size was not completely explained by the involvement of the 

highest correlation in transitions as there was a significant linear effect of absolute step size 

within transitions to the highest correlation level (i.e., 0 → 0.95 vs. 0.5 → 0.95 vs. 0.8 → 
0.95; Figure 6). Future studies will need to determine r-values that are perceptually 

equidistant.
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Phase coherence

We found significant theta and delta phase coherence for slow modulations, but no 

significant difference between modulation rates. One potential reason for this finding is the 

nature of the stimulus. As shown by Howard and Poeppel (2010), one major determinant of 

phase tracking is sharp envelope transitions across frequency bands, as they occur in speech. 

Such strong transients are largely absent in the present stimulus, for which the amplitude 

envelopes between frequency bands often run counter-correlated, thus rendering the average 

between-channel correlation close to zero. Relatedly, in the spectral domain, the stimuli in 

the current study have envelope modulation spectra without prominent peaks. This would 

have blurred prominent entrainment in specific frequency bands. Nonetheless, there was a 

linear dependency in theta phase coherence over the correlation levels, presumably reflecting 

heightened sensitivity to slow modulations at the level of auditory cortex (Giraud et al., 
2000; Harms & Melcher, 2003; Boemio et al., 2005; Harms et al., 2005; Overath et al., 
2008; Overath et al., 2012; Wang et al., 2012; Teng et al., 2018).

Contrary to our hypothesis, we did not find significant phase coherence in the gamma band 

for sounds with fast temporal modulations. This is in line with Overath et al. (2008), who, 

using a similar stimulus, found increased blood-oxygenation-level dependent (BOLD) signal 

in the superior temporal sulcus for slow temporal modulations, but no BOLD signal increase 

for fast modulations anywhere in auditory cortex. In non-human primate brains, it has been 

shown that “synchronized” neural populations explicitly encode slow modulations via 

temporal coding, whereas “non-synchronized” populations of primary auditory neurons 

implicitly represented fast modulations via average discharge rates (Lu et al., 2001a; Wang 

et al., 2003). In human auditory cortex, concurrent M/EEG data revealed a non-phase-locked 

mode for rapid temporal modulation (Tang et al., 2016). It is conceivable that the current 

results reflect these different neural coding algorithms.

In conclusion, the current study provides new evidence for the asymmetric and non-linear 

detection of temporal ‘edges’ based on spectrotemporal modulation structure in the human 

auditory cortex, with a preferential sensitivity for the emergence of slow modulations. The 

data demonstrate that the regularity of a complex auditory scene can be constructed based on 

temporal modulation rates, extending the notion of regularity that defines temporal acoustic 

edges. The results suggest that distinct neural populations in the primary and non-primary 

auditory cortices are involved in the detection of an emergence or disappearance of slow 

spectrotemporal modulations, reflecting a general principle of pattern extraction and pattern 

matching in the auditory cortex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

2I2AFC two-interval two-alternative forced-choice

ANOVA analysis of variance

CTPC cross-trial phase coherence

DSS denoising source separation

ICA independent component analysis

IIR infinite impulse response

ISI interstimulus interval

ITC inter-trial correlation

M/EEG magneto-/electro-encephalography

MEG magnetoencephalography

MMN mismatch negativity

SD standard deviation

SNS sensor noise suppression

TSPCA time-shift principal component analysis algorithm
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Figure 1. Schematic of the stimulus.
(A) The modulation magnitude values of the 20-ms frames are depicted. Note that these are 

only relative magnitudes, as the actual loudness of the sounds in the MEG scanner was 

scaled to approximately 75 dB. The 20 rows indicate frequency channels (whose actual 

values in Hz varied between sound blocks, see Materials and Methods). (B) Cochleogram of 

a stimulus generated from the modulation magnitude shown in A (64 gammatone filters over 

20–8000 Hz; low-frequency range (<125 Hz) is truncated for visualization). (C) Power 

spectrum of the sound with the frequencies shown in B, calculated separately for the four 

levels of correlation. D) Modulation spectra averaged across gammatone filters for four 

levels of correlations. Modulation spectra were computed for each segment and averaged 

across exemplars. Note that the decay of the modulation power over frequency accelerates as 

r increases. Also, note that the peaks at 50 Hz were originated from the length of 20-ms 

frames but they were not reflected in the MEG data after preprocessing (see Supplementary 

Figure S1).
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Figure 2. Behavioral performance.
Mean d-prime scores for all types of transitions are shown in 4-by-4 matrix.
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Figure 3. Average absolute DSS1.
Conditions with positive changes (upper) and negative changes (lower) are plotted 

separately. For the “no change” condition, DSS1s were extracted from conditions without 

changes (e.g., 0 → 0, 0.5 → 0.5, …) separately, then averaged.
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Figure 4. Repeated-measures ANOVA for Previous and Current Levels.
(A) F-statistics for main effects and their interaction, (B–D) averaged DSS1 time course to 

demonstrate each effect are plotted with significant clusters marked in gray shades. 

Topography of the projected DSS1 components for the time points (i, ii, iii, iv) with 

significant effects are shown on the right.
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Figure 5. Repeated measures ANOVA for Direction and Absolute Step.
(A) F-statistics for main effects and their interaction, (B–D) averaged DSS1 time course to 

demonstrate each effect are plotted with significant clusters marked in gray shades. 

Topography of the projected DSS1 components for the timepoints (i, ii) with significant 

effects are shown on the right.
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Figure 6. Dependency of peak magnitudes and latencies of evoked responses to previous levels of 
transitions to r = 0.95.
Maximal peaks were identified from |DSS1| components for a time-window of [130, 250] 

ms.
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Figure 7. Average cross-trial phase coherence (CTPC) difference (across-CTPC subtracted from 
within-CTPC).
CTPC differences averaged across all channels are shown on time-frequency planes. 

Averaged in 1-sec time-window (for each column) and frequency band (for each row), the 

topography of CTPC differences is also displayed below each time-frequency plot for each 

correlation level.
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Figure 8. One-sample T-test for the significance of CTPC difference.
T-statistic maps on sensor space are shown for each correlation level (for each column) and 

frequency band (for each column) for a time-window of [0, 3] s. Channels belonging to a 

significant cluster are marked by white dots (corrected p < 0.05).
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Figure 9. Linear dependency of theta-band CTPC difference on correlation levels.
Averaged across all channels over time-window of [0, 3] s after transition showed a 

significant increase as revealed by a repeated-measures regression model (p < 10−4).
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Figure 10. Average inter-trial correlation (ITC) difference (across-ITC subtracted from within-
ITC).
ITC differences computed for 1-sec time-window (for each column) and frequency band (for 

each row) are shown for each correlation level.
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