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Abstract
Many of previous neuroimaging studies on neuronal structures in patients with obsessive-
compulsive disorder (OCD) used univariate statistical tests on unimodal imaging measure-
ments. Although the univariate methods revealed important aberrance of local morphometry
in OCD patients, the covariance structure of the anatomical alterations remains unclear.
Motivated by recent developments of multivariate techniques in the neuroimaging field, we
applied a fusion method called “mCCA+jICA” on multimodal structural data of T1-weighted
magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) of 30 unmedicated
patients with OCD and 34 healthy controls. Amongst six highly correlated multimodal net-
works (p < 0.0001), we found significant alterations of the interrelated gray and white matter
networks over occipital and parietal cortices, frontal interhemispheric connections and cere-
bella (False Discovery Rate q! 0.05). In addition, we found white matter networks around
basal ganglia that correlated with a subdimension of OC symptoms, namely ‘harm/check-
ing’ (q! 0.05). The present study not only agrees with the previous unimodal findings of
OCD, but also quantifies the association of the altered networks across imaging modalities.

Introduction
Obsessive-compulsive disorder (OCD) is characterized by intrusive, distressing thoughts and
ritualistic, repetitive behaviors [1]. A widely accepted neuroanatomical model of OCD suggests
the involvement of an abnormal interaction of excitatory and inhibitory cortico-striato-tha-
lamic (CST) pathways [2–4]. Although the original theory was motivated by functional abnor-
mality found in OCD patients [4, 5], several morphological studies reported structural
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alterations that are relevant to the theory [6–9] A popular computational method called voxel-
based morphometry (VBM) [10] has been widely used to assess human brain structures in-vivo
using magnetic resonance imaging (MRI). Many VBM studies on patients with OCD consis-
tently found aberrant gray matter regional volume in bilateral basal ganglia and dorsal medial
frontal cingulate gyri, as summarized by a quantitative meta-analysis [11]. In addition to the
gray matter alteration, other studies using diffusion tensor imaging (DTI) found white matter
abnormalities in OCD patients, which were localized in corpus callosum [7, 12, 13], cingulum
bundles [14] and the white matter in parietal regions [15]. A recent multi-site VBM study in-
cluding more than 400 patients with OCD also found the aberrant gray and white matter densi-
ties in medial and inferior frontal regions [16].

Although the previous studies found structural abnormalities in OCD patients in a signifi-
cant agreement with the CST hypothesis, the covariance structure of the alterations in gray and
white matter remains unclear. In a multimodal anatomical study on pediatric OCD patients
[17], three different univariate analyses using T1-weighted MRI and DTI were performed and
showed qualitative resemblance among the results. Similarly, a multimodal meta-analysis on
brain structures showed larger regional volume of the white matter and smaller fractional an-
isotropy (FA), which is an index of directionality of a tensor that models water diffusion in the
white matter, at the same location of the anterior bundle of corpus callosum in OCD patients
than healthy controls [18]. Whereas those two studies showed spatial overlaps of the multi-
modal alterations [17, 18], another recent multimodal morphological study showed concurrent
alterations by constraining one modality by another [19]. In the structural study [19], group
differences between OCD patients and healthy controls were found in average cortical thick-
ness of terminal points of the tractography streamlines that were started from white matter
voxels with group differences themselves in FA. Despite the qualitative convergence, the associ-
ation of the structural abnormalities in OCD patients from multiple neuroimaging techniques
has not been quantified yet in any other studies to our best knowledge.

In order to quantitatively examine the relationship amongst various alterations that can be
measured using different imaging modalities, blind source separation (BSS) methods such as
canonical correlation analysis (CCA) and independent component analysis (ICA) have been
introduced in multimodal neuroimaging studies [20, 21]. The goal of BSS, under the assump-
tion that the measurements are linear mixtures of independent sources, is to ‘demix’ the mea-
surements (e.g. gray matter density maps) into the latent spatial sources (i.e. structural
covariance spanning over certain locations in the brain) and their contributions to the mea-
surements, which are different across individuals [22].

The latent spatial sources from anatomical images reflect the covariance structures in the
morphological features, which have been investigated extensively using structural MRI im-
ages [23–29]. The covariance may arise from genetic influences, mutual trophic reinforce-
ment, or neuroplasticity based on common experiences [24, 30–32]. Whereas many of the
studies used the characteristics of gray matter such as gray matter regional volume [33] or
cortical thickness [34], some studies explored the covariance structures of white matter via
Jacobian determinant of the deformation filed from a non-linear registration, which can be
used as a relative measure of the local volume, showing agreements with the manually de-
fined DTI atlas [35, 36]. The Jacobian determinant of white matter was jointly used with con-
current DTI datasets detecting a topological alteration of the developing brain networks [37].
Moreover, ICA-based approaches were also applied to DTI-derived measures such as FA and
mean diffusivity (MD) in order to investigate covariance structures in the white matter [38,
39]. The studies demonstrated strong correlations within anatomically meaningful fiber tract
bundles [38] and showed the validity of the white matter covariance structures in analyzing
the effects of a neurodegenerative disease [39].
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The key importance of using multivariate techniques to the multimodal neuroimaging data-
sets, instead of separate massive-univariate analyses, is the possibility to use cross-information
in the multimodal data to explore the complex interplay of brain alterations [40], of which only
a specific characteristic (i.e. FA) can be acquired by a certain neuroimaging technique (i.e.
DTI). Furthermore, unlike ‘asymmetric’ approaches such as constraining one measurement by
the other as in [19], ‘symmetric’ fusion approaches enables researchers to have the multiple
datasets jointly contribute to find neurophysiological abnormalities [40], which cannot be
achieved by univariate analyses. The fusion techniques have shown their abilities to detect
cross-modal abnormalities in patients with schizophrenia [20, 21, 41] and bipolar disorder
[42]. Specifically, ICA decomposes naturally separable sources that covary similarly through
individuals while it maximizes the statistical independence of sources [43]. On the other hand,
CCA finds maximally correlating components between the modalities across subjects [21].
Thus the combination of ICA and CCA has been proposed for natural source separation that is
reliable across modalities [42].

In the present study, we applied the combinatory method [42] to find latent covariance pat-
terns of the gray and white matter that contribute to the known structural alterations in the
brains of the patients with OCD. It is worthy noting that the multivariate approach does not
seek correlation between single voxels but the correlation between spatial sources. Thus using
the fusion method, we explored possible relationships between the altered covariance struc-
tures in the gray matter and the white matter due to OCD, which may give us an insight to ex-
tend the CST theory.

In addition, we further examined whether this fusion method could find multimodal com-
ponents that correlate with the underlying subscores and subdimensions of the OC symptoms
[44]. As the high inhomogeneity of the patients with OCD is well known to the community
[44], if we could find a latent component, which is exclusively correlated to a specific subdi-
mension of OC symptoms, it may be useful in differentiating subgroups of the patients and dis-
entangling inhomogeneity of the OC symptoms.

Materials and Methods
Human subjects and psychiatric assessment
We recruited 30 patients who fulfilled the criteria for OCD in the fourth edition of the Diag-
nostic and Statistical Manual of mental disorders (DSM-IV) [1] through the OCD clinic at
Seoul National University Hospital (SNUH, Seoul, South Korea). The patients were diagnosed
using the Structured Clinical Interview for DSM-IV (SCID). Among the patients with OCD, 22
patients were drug-naïve, and the 8 other patients were unmedicated for at least four weeks at
the time of inclusion. Seven patients were assessed to show comorbidity in OCD: three of them
to have obsessive-compulsive personality disorders and the four others to have depressive dis-
order (not otherwise specified).

Along with the patients, we recruited 34 age- and gender-matched healthy controls as well.
We used the SCID non-patient version to confirm that none of the controls was with the Axis I
psychiatric disorders. The exclusion criteria for both patients and controls included lifetime
history of psychosis, bipolar disorder, major depressive disorder, substance abuse or depen-
dence, significant head injury, seizure disorder or mental retardation. All subjects were right-
handed. Besides other demographic variables, the intelligence quotient (IQ) was estimated by
the Korean-Wechsler Adult Intelligence Scale-Revised (K-WAIS-R). The degrees of depression
and anxiety were measured by self-reporting Beck’s Depression Inventory (BDI) [45] and
Beck’s Anxiety Inventory (BAI) [46], respectively. The severity of OC symptoms was assessed
with the clinician-administered Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) [47]. In

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 3 / 23



addition to the Y-BOCS subscores for obsession and compulsion, we estimated subdimensional
scores from Y-BOCS symptom checklist [44, 48], as an alternative measure to quantify subdi-
mensional characteristics of OC symptoms in the absence of multidimensional measures such
as such as Dimensional Y-BOCS [49] and Padua Inventory [50]. For the 13 items in Y-BOCS
checklist, numerical assessments are given as 0 (absent symptom), 1 (symptom present but not
major reason for concern) or 2 (prominent symptom). The subdimensional scores in the pres-
ent study were simply approximated by the mean scores of certain items as done in [44]: the
‘contamination/washing’ score is the mean of ‘contamination obsession’ and ‘washing/cleaning
compulsion’ scores; the ‘harm/checking’ score is the mean of ‘aggressive obsession’ and ‘check-
ing compulsion’ scores; the ‘symmetry/ordering’ score is the mean of ‘symmetry obsession’,
‘checking compulsion’, ‘repeating compulsion’, ‘counting compulsion’ and ‘ordering compul-
sion’ scores; the ‘sexual/religious obsessions’ score is the mean of ‘sexual obsession’ and ‘reli-
gious obsession’ scores; and the ‘hoarding/saving’ score is the mean of ‘hoarding obsession’
and ‘hoarding compulsion’ scores. Y-BOCS checklist scores of four patients were unavailable
due to administrative difficulties. Thus correlation analyses on the subdimensional scores were
only performed on 26 patients with OCD.

Ethics statement
The present study was approved by the Institutional Review Board at Seoul National University
Hospital (Seoul, South Korea; reference number: C-1405-076-581). All subjects were fully in-
structed about the scanning and assessment procedures and then submitted written
informed consents.

Imaging acquisition
We obtained T1-weighted 3DMRI using the 1.5 T Magnetom Avanto Syngo scanner (Siemens,
Erlangen, Germany) with the following parameters: TR/TE = 1160/4.76 ms, flip angle = 15°,
voxel size: 0.45 × 0.45 × 0.90 mm3, field of view: 350 × 263 × 350 mm3.

We also obtained DTI of the subjects. With 10 repetitions with no diffusion weight, the dif-
fusion weighted images along the 12 noncollinear directions with the b-factor of 1000 s/mm2

were acquired with the following parameters: TR/TE = 9200/83 ms, voxel size: 2.0 × 2.0 × 2.0
mm3, field of view: 224 × 256 × 150 mm3.

T1-weighted MRIs of the current subjects were included in our previous graph-theoretical
analysis showing disparity between dorsal and ventral corticocortical networks in the patients
with OCD [28], but diffusion-weighted MRIs were not reported in anywhere.

Multivariate analysis using mCCA+jICA
As we mentioned above, we used a multivariate method that combines multiset-CCA (mCCA)
and joint ICA (jICA), called “mCCA+jICA” fusion method [42]. The jICA method has been
used for BSS from a multimodal dataset including functional and structural in-vivo measure-
ments of human brains [20]. It is noteworthy that, by definition, the context of features is irrel-
evant to the BSS methods; it is only relevant to the neurobiological interpretations. Therefore
the jICA method with/without (m)CCA was applied to functions images with different tasks
[51], different structural images [52], and both of functional and structural images [42]. Since
the “mCCA+jICA” framework is in a flexible and general form of a BSS method [53], we
adopted the framework for the current study.

The analysis steps of the mCCA+jICA method are illustrated with examples in Fig 1. As the
theory is explained in details in the original paper [42], we briefly summarized how we ana-
lyzed our data in the following sections.
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For the preprocessing of neuroimaging data and the use of probabilistic atlases, FMRIB’s
Software Library (FSL; http://www.fmrib.ox.ac.uk/fsl/) was used [54]. For the multivariate
analysis of mCCA+jICA [42], Fusion ICA Toolbox (FIT; http://mialab.mrn.org/software/fit/)
was employed on the MATLAB environment (Mathworks Inc., Natick, MA, USA). The FIT,
which is freely available, provides comprehensive packages for ICA-based fusion analysis. Par-
ticularly, it supports interactive graphic user interfaces (GUI) and step-by-step tutorials pro-
moting applications by clinical researchers.

Feature selections: preprocessing. The GM image was estimated from the T1-weighted
MRI. First the non-brain tissue was discarded using Brain Extraction Tool (BET v2.1) in FSL
[55], with the parameters optimized for each subject by means of visual inspection. Then, the
tissue types of gray matter, white matter and cerebrospinal fluid were segmented and their
probabilities, or concentrations bound between zero and one, within a voxel were estimated
using FMRIB's Automated Segmentation Tool (FAST).

The FA computation from the DTI data was carried by FMRIB’s diffusion toolbox (FDT
v2.0) in FSL. For each run of DTI scanning, all volumes were corrected for the distortions due

Fig 1. Overview of the fusionmethod “mCCA+jICA”. The multiset canonical correlation analysis (mCCA,A) and joint independent component analysis
(jICA,B) are depicted. In the mCCA (A), the feature matrix of the k-th imaging Xk with the dimensions of the number of subjects (e.g. 64) by the number of
voxels is modeled as a product of mixing profileDk and associated component Ck. Subsequently, in the jICA (B), the concatenated associated component
matrixCk with the dimensions of the number of components (e.g. 6) by the sum of the number of voxels across imaging modalities is modeled by the
demixing matrixW"1

k and the joint independent components Sk. To illustrate the meaning of the row and column vectors in the matrices, the colored vectors in
the matrices are back-reconstructed in the brain space and visualized. In the feature matrices X, the i-th row vector of x1

ðiÞ and x2
ðiÞ are GM and FA images of

the i-th subject (A, leftmost). In the associated components matrices C, the j-th row vector of cðjÞ
1 and cðjÞ

2 are source images maximizing inter-modal correlation
by mCCA (A, rightmost). In the joint independent component matrix, the l-th row vector sðlÞ

1 and sðlÞ
2 are source images maximizing inter-source independency

by jICA (B. rightmost).

doi:10.1371/journal.pone.0127118.g001
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to Eddy currents and head motions by affine transformation to the first volume with no diffu-
sion weighting. Then the volumes without diffusion weighting were averaged and non-brain
tissue was discarded using BET. Tensor models were fit to describe diffusion in the corrected
volumes within the brain mask. Then the directionality of diffusion tensor was computed in
terms of FA [56]. The FA would be zero for a perfectly isotropic tensor and one for a perfectly
anisotropic tensor.

The resulting GM and FA maps in native space were spatially normalized into Montreal
Neurological Institute (MNI) standard space in the resolution of 2-mm isotropic voxel accord-
ingly to the VBM framework [10, 57] as implemented in FSL (FSL-VBM v1.1). We used
‘MNI152-T1’ template for the initial template for the GM images and ‘FMRIB58-FA’ template
for the FA images. Study-specific templates for unbiased normalization were created using the
linear transformation with FMRIB’s Linear Image Registration Tool (FLIRT) and the following
nonlinear transformation with FMRIB’s Non-linear Image Registration Tool (FNIRT). Then
the individual images were warped into the study-specific templates for GM and FA, respec-
tively. The registered images were then corrected for inter-subject variability in local scale
using the Jacobian determinant of the deformation field, which represents local expansion or
contraction [58], as introduced in the ‘optimized VBM’ framework [57]. Because of the correc-
tion, the resulting values are no longer bounded between zero and one. The images were
smoothed with a Gaussian isotropic kernel with σ of 3 mm, i.e. full-width of half maximum
(FWHM) of about 6.9 mm for x-, y-, and z-directions, to reduce the risk of abrupt noise and
misalignment during the spatial normalization [59]. We used the preprocessed images for GM
and FA as our multimodal features in the following multivariate analysis. The feature maps
were scaled in z-scores to make the units of measurements comparable.

Dimensionality reduction: multiset-CCA. We modeled multimodal featuresXk 2 Rn% pk

as a multiplication of the spatial distribution of sources Sk 2 Rs% pk and nonsingular mixing ma-
trix Ak ∊ Rn×s that represents the contributions of sources to individual images [42] as

Xk¼ AkSk; ð1Þ

where k is an index for modality as k = 1 for GM and k = 2 for FA, n is the number of subjects,
s is the number of independent sources that is common to both modalities, and pk is the num-
ber of voxels of the modality k. The columns of A1 and A2 are assumed to be highly correlated
only on the corresponding indices [42]. This assumption is much more flexible than a separate
method either of multiset-CCA [60] or joint ICA [20], in the sense that the neuroimaging mea-
sures are likely to have significant correlations but not necessarily as prefect as previously pre-
sumed in joint ICA analysis [20].

As described in Sui and colleagues [42], first the dimensionality of the features was reduced
using singular value decomposition (SVD) to the dimensions of 30 for each modality retaining
more than 98.9% of non-zero eigenvalues of both modalities. Then we separated the reduced
features by the mixing profilesDk∊Rn×c and the associated componentsCk 2 Rc% pk using
mCCA as

Xk¼ DkCk : ð2Þ

The mCCA with two features in the present study reduces to CCA [61] similarly to the applica-
tion in the original paper [42]. The number of associated components was determined as 6
using minimum description length (MDL) criteria [62]. The column vector ofDk, called ‘ca-
nonical variate’, represents the contribution of the associated component to the features of the
individual subjects. The correlation of canonical variates were maximized step-wisely from the
first to the last associated component, while the correlation between the canonical covariates
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with different indices were minimized [61]. The optimized correlations across the modalities
were ranged from 0.998 to 0.969 in decreasing order.

Spatial decomposition: joint ICA. It is shown that the components in the real brain data
found using mCCA are typically contain sources that are not completely decomposed due to
the spatial dependency of neuroimaging data across modalities [42]. Therefore, the concatenat-
ed (joint) associated components C = [C1,C2] were subsequently separated into spatially inde-
pendent sources S = [S1,S2] using jICA [20, 42] as

C ¼ W"1S; ð3Þ

where p = p1 + p2, s is the number of independent sources andW-1∊Rc×s is the pseudo-inverse
of demixing matrix thus representing the contribution of the independent components (ICs) S
to individual associated components C. The statistical dependency among the joint ICs was
minimized using information maximization [63]. Taken together, the method of mCCA+jICA
is summarized [42] as

Xk ¼ DkCk ¼ DkW
"1Sk ¼ AkSk; Ak ¼ DkW

"1: ð4Þ

In other words, the contribution of spatially independent sources to the individual images,
which we modeled as Ak, is actually given as the linear mixture of the contribution of the inde-
pendent sources to associated components Dk and the contribution of the associated compo-
nents to individual imagesW-1.

We used Infomax algorithm to separate independent sources, which performs optimally
under the assumption of super-Gaussianess [63]. The super-Gaussianess of the current data, as
in many real-world signals [63], was suggested by kurtosis K greater than 0 (K = 3.33 for GM,
K = 4.54 for FA). Positive, non-zero kurtosis means that the distribution of the data has a
sharper peak and longer tails than the Gaussian distribution. Kolmogorov-Smirnov (K-S) tests
also used to confirm that the data is non-Gaussian (p< 10-16). To increase stability and robust-
ness of the non-linear optimization, the estimates of jICA were performed for 1000 times
and averaged.

Statistical inferences. Given that the estimated sources are statistically independent and
reliable across imaging modalities as possible under the constraint of the given dimensionality,
we wish to find some sources that differentially contribute to individual structural images be-
tween the OCD patients group and the healthy controls. In order to infer such group differ-
ences, two-sample t-tests were performed on the IC loadings in the mixing matrix Ak. In the
context of general linear model (GLM), our model on the IC loading can be written as

ai;s ¼ b0 þ b1gi þ ε ð5Þ

where ai,s is the mixing coefficient for the s-th component of the i-th individual, gi is a group
index being either 0 or 1, β0 and β1 are unknown parameters and ε is Gaussian noise with zero
mean and unit variance. Since the Gaussian assumption is placed on the error term, we used

K-S goodness-of-fit test on the residual of the GLM ai;s " ðb̂0 þ b̂1giÞ to justify the normality of
the mixing coefficients [64].

Moreover, as we introduce a multiple comparisons problem by collectively performing mul-
tiple t-tests for 12 independent sources, False Discovery Rate (FDR) was applied to control the
family-wise type-I error level, i.e. q = 0.05 [65].

In addition to the group-wise analysis, we examined correlations between the clinical mea-
sures and the IC loadings within the OCD patients. Spearman’s rank correlation was used in
order to minimize sensitivity to outliers. In the correlation analysis, the mixing coefficients of
patients describe the contributions of a group-specific component, which is distinct from the

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 7 / 23



common sources Sk we mentioned above [42]. To obtain a group-specific source, the mixing
matrix Ak and features Xk in (Eq 1) were separated into the healthy controls (HC) and the
OCD patients as

Xk ¼
XHC;k

XOCD;k

" #

; Ak ¼
AHC;k

AOCD;k

" #

: ð6Þ

Then the group-specific sources are given as

SHC;k ¼ A"1
HC;kXHC;k; SOCD;k ¼ A"1

OCD;kXOCD;k; k ¼ 1; 2: ð7Þ

Including irrelevant variables as covariate terms in the GLMmight introduce reduce pre-
cession in estimating unknown coefficients [66]. Thus we did not covary any other factors in
GLMs and correlation analysis such as age, sex, the age of onset of illness, the duration of ill-
ness, the depression level (BDI), and the anxiety level (BAI) as none of them was significantly
correlated with the IC loadings (q> 0.05). Although we found significant difference in the
BDI and BAI between the patients and the healthy controls (see the Results section below),
those variables were not correlated with the loading coefficients of the ICs, thus not included
as covariates.

To identify the anatomical dispositions of the components, the probabilistic atlases of FSL
were employed. Specifically, Harvard-Oxford cortical [67] and subcortical structural [68] at-
lases were used for gray matter, and Johns Hopkins University white-matter tractography atlas
[69] was used for white matter. For each cluster, brain regions with maximal probabilities were
determined based on the mean probability of a certain label in the atlases. When the white mat-
ter clusters cannot be identified using white-matter tractography atlas, the proximate gray mat-
ter structures were used to describe anatomical locations.

Results
Demographic and clinical variables
The demographic and the clinical variables of the current subjects are given with test statistics
and p-values for the equality of group means in Table 1. There were no significant differences
found in age (p = 0.396), gender ratio (p = 0.935) and education year (p = 0.662) and IQ
(p = 0.658) suggesting the controls were well matched in the demographic variables. The pa-
tients with OCD showed significantly different levels of depression and anxiety in relation to
the healthy controls: BDI (p< 10-7) and BAI (p< 10-6) scores were significantly higher in the
OCD patients than in the healthy controls. The mean of the total Y-BOCS scores of the OCD
patients was 21.17 with the standard deviation of 6.24.

The numbers of patients with present (score = 1) and prominent (score = 2) symptoms of
Y-BOCS checklist [47] and the numbers of patients with present (0< score! 1) and high
(1< score! 2) scores of five subdimensional scores [48] are given in Table 2 (n = 26). As
there were small (! 4) patients with subdimensional scores greater than zero for ‘sexual/reli-
gious obsessions’ and ‘hoarding/saving’, we only used the three subdimensional scores of ‘con-
tamination/washing’, ‘harm/checking’ and ‘symmetry/ordering’ in the following correlation
analysis. The mean and standard deviation of the analyzed scores were: ‘contamination/wash-
ing’, 1.06 ± 0.92; ‘harm/checking’, 0.56 ± 0.54; ‘symmetry/ordering’, 0.32 ± 0.29. The pair-wise
rank correlations between subdimensional scores were not significant in any pairs (min
p = 0.181) as the orthogonality of subdimensions was suggested in a previous factor analysis on
Y-BOCS checklist [48].
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Table 1. Demographic and clinical variables of patients with OCD.

Variable OCD patients (n = 30) Controls (n = 34) t-/z-stat. p-value

Age (year) 25.00 ± 6.57 23.88 ± 3.63 0.86 0.395

Gender (m/w) 20 / 10 23 / 11 -0.05 0.961

Education (year) 13.30 ± 3.31 14.04 ± 1.31 0.44 0.662

IQ 112.17 ± 11.24 113.35 ± 10.09 -0.45 0.658

BDI 17.70 ± 10.90 4.00 ± 6.08 6.31 < 10-7

BAI 18.83 ± 14.15 4.35 ± 5.46 5.52 < 10-6

Y-BOCS

Obsession 12.07 ± 3.58 - - -

Compulsion 9.10 ± 4.84 - - -

Total 21.17 ± 6.24 - - -

Age of onset (year) 16.20 ± 7.35 - - -

Duration of illness (year) 7.67 ± 6.73 - - -

Mean and standard deviation are given as ‘mean ± std.’, except for gender ‘men/women’. Test statistics for group differences between the patients and
controls are given with p-values. Abbreviations: BDI, Beck’s Depression Inventory; BAI, Beck’s Anxiety Inventory; Y-BOCS, Yale-Brown Obsessive-
Compulsive Scale.

doi:10.1371/journal.pone.0127118.t001

Table 2. The numbers of patients with present and prominent symptoms categorized by the Y-BOCS
checklist and the estimated subdimensional scores (n = 26).

Y-BOCS checklist items Present (= 1) Prominent (= 2)

Obsessions

Aggressive 2 (8%) 4 (15%)

Contamination 1 (4%) 14 (54%)

Sexual 1 (4%) 1 (4%)

Hoarding 1 (4%) 1 (4%)

Religious 2 (8%) 1 (4%)

Symmetry 4 (15%) 0 (0%)

Somatic 1 (4%) 3 (12%)

Compulsions

Washing 2 (8%) 12 (46%)

Checking 3 (12%) 8 (31%)

Repeating 8 (31%) 10 (38%)

Counting 1 (4%) 1 (4%)

Ordering 2 (8%) 0 (0%)

Hoarding 1 (4%) 1 (4%)

Estimated subdimensional scores Present
(0 < score ! 1)

Prominent (1 < score
!2)

Contamination/washing 4 (15%) 12 (46%)

Harm/checking 15 (58%) 1 (4%)

Symmetry/ordering 17 (65%) 0 (0%)

Sexual/religious obsessions 4 (15%) 0 (0%)

Hoarding/saving 1 (4%) 1 (4%)

doi:10.1371/journal.pone.0127118.t002
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Joint independent components with group differences
Using the mCCA+jICA framework, we found six joint independent components Sk for each
modality as we determined by MDL criteria. The components were highly correlated across
modalities in terms of their contribution to the individual images (i.e. loading coefficients).
The highest Pearson’s correlation of the first joint components was 0.768 and the lowest one of
the sixth joint components was 0.489 (p< 10-4). All joint ICs were back-reconstructed in the
brain space, which are visualized with the threshold of |z|> 2 in Fig 2. Notably, the threshold
of |z| = 2 was not chosen for a statistical significance but only arbitrarily selected for the visuali-
zation of ICs. One may find that some components are remarkably localized such as GM #4
(inferior parts of the bilateral cerebella) and FA #5 (the bilateral inferior longitudinal fasciculi).
Many of multimodal networks, however, span over remote brain regions showing long-range
associations of the local morphometric features.

Fig 2. Six joint independent components. Back-reconstructed maps of the components are shown with a threshold of |z| > 2 (A-E) for GM (orange, z > 2;
blue, z < -2) and FA (magenta, z > 2; green, z < -2). The threshold is not chosen for a statistical significance but only for visualization of the components. The
Pearson’s correlation between the loading coefficients of GM and FA are also noted in parentheses. The axial slices are oriented in a neurological convention
(the right hemisphere is on the right side of the image) and chosen for the largest four clusters. The MNI z-coordinate is noted on the top of each slice.

doi:10.1371/journal.pone.0127118.g002
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To validate the Gaussianess of the mixing coefficients, K-S tests for the 12 IC loadings were
carried out on the residuals of the GLM (Eq 5). As none of the K-S tests rejected the hypothesis
on the normality (min uncorrected p = 0.099), we proceeded to use the t-test to infer
group differences.

We found that the second joint ICs (GM #2 and FA #2) differentially contributed to the in-
dividual images between the OCD patients and the controls (q! 0.05; GM #2, p = 0.0003; FA
#2, p = 0.007). The boxplots of the IC loadings and the spatial distributions of the sources are
shown in Fig 3. For the suprathreshold clusters, most probable anatomical annotations, peak z-
statistics and MNI-coordinates can be found in Table 3.

It is noteworthy that the three subjects with low FA #2 loadings (Fig 3B, green crosses) did
not drive the group difference. In fact, the p-value of the two-sample t-test decreases if the sub-
jects are discarded (p = 0.003). However, we did not regard the subjects as outliers to be exclud-
ed from the analysis because none showed critically high inter-subject variability in terms of
the all IC loadings. Specifically, the mean of each column of the covariance matrix of the IC
loading across the subjects was higher than the overall mean subtracted by two standard

Fig 3. The second joint independent components (IC) that differed between the patients with OCD and the healthy controls. The loading coefficients
of GM #2 (A) and FA #2 (B) are given in boxplots overlaid on discrete violin-plots with the p-values of t-tests for group differences. The z-transformed IC maps
are visualized over the sagittal slices of MNI152 template from the x-coordinate of -52 mm (left hemisphere) to 52 mm (right hemisphere) for every 8 mm with
a threshold of |z| > 2 for GM #2 (C) and FA #2 (D). The number on each cluster denotes the cluster index that can be found in Table 3.

doi:10.1371/journal.pone.0127118.g003
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deviations for all individuals. A similar approach was introduced to assess the homogeneity of
GMmaps in VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/check-sample-homogeneity/).

The mixing coefficients of the joint ICs were higher in the OCD patients than the controls
(Fig 3A and 3B). It can be interpreted as, in the OCD patients with the higher coefficients, the
corresponding component had greater contribution to the original feature than the controls in
a region with positive z-value of the IC map. On the other hand, the contribution in the pa-
tients was smaller in a location with the negative z-value of the IC maps [20]. The GM #2

Table 3. Suprathreshold clusters of the second joint independent components that differed between the patients with OCD and the healthy
controls.

Cluster
index

Volume
(cm3)

Peak
z-stat.

MNI-coordinate
(mm)

Anatomical region

A. GM #2 (Positive z-value, OCD > HC; Negative z-value, OCD < HC)

1 6.54 3.96 (-32, -78, -16) Left cerebellum and left occipital fusiform gyrus and left lateral occipital cortex (inferior)

2 5.45 3.51 (40, -60, -16) Right cerebellum and right temporal occipital fusiform cortex

3 3.77 4.16 (58, -32, 0) Right middle temporal gyrus (posterior) and right superior temporal gyrus (posterior)

4 3.71 5.89 (-20, -62, 18) Left precuneous cortex and left cuneal cortex and left supracalcarine cortex

5 3.66 4.18 (34, -42, 42) Right superior parietal lobule

6 3.28 5.43 (-34, 14, 36) Left middle frontal gyrus

7 3.26 3.38 (4, 4, 40) Right cingulate gyrus (anterior) and left cingulate gyrus (anterior) and right supplementary
motor cortex

8 2.80 4.78 (-30, -38, 54) Left superior parietal lobule and left postcentral gyrus

9 2.74 3.14 (-24, -14, 58) Left superior gyrus and left precentral gyrus

10 2.30 2.94 (28, -4, -38) Right parahippocampal gyrus (anterior) and right temporal fusiform cortex (anterior) and right
temporal pole

11 1.66 3.26 (-32, -10, -34) Left temporal fusiform cortex (anterior) and left temporal fusiform cortex (posterior) and left
parahippocampal gyrus (anterior)

12 1.33 5.21 (34, 14, 38) Right middle frontal gyrus

13 1.32 2.62 (16, -92, -10) Right occipital pole and right occipital fusiform gyrus and right lingual gyrus

14 1.20 2.91 (28, -66, -48) Right cerebellum

15 6.86 -4.07 (-32, -60, 34) Left lateral occipital cortex (superior)

16 6.06 -5.16 (48, -58, 2) Right lateral occipital cortex (inferior) and middle/inferior temporal gyri (temporooccipital)

17 4.73 -5.42 (-34, -70, -42) Left cerebellum

18 3.30 -4.50 (-24, -52, 4) Left lingual gyrus and precuneous cortex

19 2.43 -3.93 (26, -50, 4) Right lingual gyrus

20 2.18 -3.30 (-30, -16, 68) Left pre/postcentral gyri

21 1.76 -3.55 (-22, 54, 0) Left frontal pole

22 1.71 -2.87 (32, -70, 28) Right lateral occipital cortex (superior)

23 1.28 -3.05 (20, -80, 44) Right lateral occipital cortex (superior) and precuneous cortex

24 1.07 -2.68 (48, 0, -36) Right inferior and middle temporal gyri (anterior)

B. FA #2 (Positive z-value, OCD > HC; Negative z-value, OCD < HC)

1 7.20 4.72 (-32, -54, 34) Left superior longitudinal fasciculus

2 2.77 2.92 (30, -32, 44) White matter near right postcentral gyrus

3 1.25 2.77 (44, -28, 30) Right superior longitudinal fasciculus

4 1.22 2.69 (-20, -46, -30) White matter in left cerebellum

5 6.78 -3.73 (18, 32, -2) Forceps minor

6 1.18 -2.27 (-16, 24, -8) White matter near left caudate

7 1.17 -3.00 (16, -6, 2) White matter near right pallidum and thalamus

Only clusters with peak |z| > 2 and larger volume than 1 cm3 are tabulated for simplicity.

doi:10.1371/journal.pone.0127118.t003
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component was widely distributed over the cerebella, bilateral middle temporal gyri, inferior
occipital lobes, superior parietal lobules and middle frontal gyri, and cingulate gyri (Fig 3C).
On the other hand, the FA #2 component was localized on the superior longitudinal fasciculi,
forceps minor, and the white matter in subcortical structures (Fig 3D).

Correlation analysis with IC loadings and clinical measures
Subsequently, we analyzed the correlations between the IC loadings and the clinical measures
within the OCD patients. We did not find any significant rank correlations of the mixing coef-
ficients with the Y-BOCS total and subscores (q> 0.05). Uncorrected p-values were smaller
than 0.05 for negative rank correlations of the GM #1 coefficients with Y-BOCS total scores
and compulsion subscores (min p = 0.012). But none survived after the FDR was applied.

On the other hand, we found significant rank correlations between the IC loadings and a
subdimensional score of the OC symptoms (n = 26, q! 0.05). As given in Fig 4, the second
and sixth OCD-specific white matter ICs were found to negatively correlate with subdimen-
sional scores of ‘harm/checking’, respectively (OCD-FA #2, Spearman’s r = -0.554, p = 0.003;
OCD-FA #6, Spearman’s r = -0.594, p = 0.001). For the suprathreshold clusters, the most prob-
able anatomical annotations, peak z-statistics and MNI-coordinates are tabulated in Table 4.

Since the correlations were negative, a positive z-value (Fig 4C and 4D; magenta) implies
lower contributions in the patients with low ‘harm/checking’ scores than ones with high scores
whereas a negative z-value (Fig 4C and 4D; green) indicates higher contributions in the pa-
tients with the high scores of the subdimension of OC symptom. The OCD-specific FA #2
component was mainly localized on the left corticospinal tract as well as forceps minor (Fig
4C). The OCD-FA #6 component spanned over the brainstem, bilateral anterior thalamic radi-
ation, and the white matter near the left thalamus (Fig 4D).

It should be noted that the group-specific IC maps have different spatial dispositions from
the common IC map. In order to illustrate the degree of divergence between the common FA
#2 and the group-specific FA #2 components, the thresholded (|z|> 2) set differences from
each other (HC-minus-OCD in cyan, OCD-minus-HC in red), and the intersection (blue) are
visualized in Fig 4E. The common FA #2 components is also overlaid in Fig 4E as black con-
tours with |z| = 2. The OCD-minus-HC set, i.e. exclusively OCD-specific regions, included a
distinctive extension to the left superior longitudinal fasciculus toward the anterior and poste-
rior directions and the focal clusters on the anterior parts of the corpus callosum. Therefore,
the finding of the negative correlations of the OCD-specific FA #2 loadings with the ‘harm/
checking’ subdimension should be differentiated from the finding of the common FA #2 with
the group difference.

Discussion
Advantages of the multivariate fusion method over separate univariate
analyses of multimodal data
In order to illustrate the utility of the mCCA+jICA method, the joint IC maps (|z|> 2) are
compared with the separate VBM analyses on the gray and white matter in Fig 5. Despite
major agreements such as the bilateral lingual gyri (Fig 5A, x = -28, -20, 20, 28 mm) and the
left region of forceps minor (Fig 5B, x = -20, -12 mm), the discrepancy between two analyses
was noticeable. One possible reason is the spatial configuration of the sources. In case a source
with a group difference overlaps another common source to a large extent, the difference be-
tween the univariate and multivariate analyses can be exaggerated (a detailed discussion with a
simulation is provided in S1 File). But more importantly, the difference between VBM and
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Fig 4. OCD-specific independent components (IC) that correlated with a subdimensional score of OC symptom. The ranks of IC loadings of OCD-FA
#2 (A) and OCD-FA #6 (B) are plotted over the ranks of ‘harm/checking’ subdimensional scores. The z-transformed IC maps are visualized over the sagittal
slices of MNI152 template from the x-coordinate of -52 mm (left hemisphere) to 52 mm (right hemisphere) for every 8 mm with a threshold of |z| > 2 for
OCD-FA #2 (C) and OCD-FA #6 (D). The number on each cluster denotes the cluster index that can be found in Table 4. To illustrate the differences of the
common and group-specific FA #2 components (E), the set differences (HC—OCD, cyan; OCD—HC, red) and the intersection (OCD \ HC, blue) of the
group-specific maps with the commonmap (black contour) are shown.

doi:10.1371/journal.pone.0127118.g004
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Table 4. Suprathreshold clusters of the OCD-specific independent components that correlated with a subdimensional score of OC symptom.

Cluster
index

Volume
(cm3)

Peak
z-value

MNI-coordinate
(mm)

Anatomical region

A. OCD-specific FA #2 (Negative correlation with ‘harm/checking’ subdimension)

1 9.62 4.76 (-26, -46, 42) Left corticospinal tract

2 2.72 3.46 (30, -32, 42) Right superior longitudinal fasciculus

3 1.78 3.22 (-30, -72, 10) Left inferior longitudinal fasciculus, forceps major and left inferior fronto-occipital
fasciculus

4 1.14 3.52 (14, -62, 34) White matter near right precuneous cortex

5 1.05 3.20 (46, -28, 32) Right superior longitudinal fasciculus

6 4.65 -3.60 (8, 24, 0) Forceps minor

7 2.30 -2.62 (-26, -20, 6) White matter near left putamen and thalamus and left corticospinal tract

8 1.78 -2.63 (12, -4, 28) White matter near right caudate

9 1.08 -2.77 (2, 10, 18) White matter near left cingulate gyrus (anterior)

B. OCD-specific FA #6 (Negative correlation with ‘harm/checking’ subdimension)

1 11.27 3.69 (20, -48, -30) White matter in brain-stem

2 2.43 2.94 (-22, -20, 14) White matter near left thalamus and left corticospinal tract

3 3.53 -2.81 (-28, 20, 18) Left anterior thalamic radiation

4 2.57 -3.32 (46, -28, 32) Right superior longitudinal fasciculus

5 2.54 -2.70 (30, 22, 18) Right anterior thalamic radiation

Only clusters with peak |z| > 2 and larger volume than 1 cm3 are tabulated for simplicity.

doi:10.1371/journal.pone.0127118.t004

Fig 5. Comparison between VBM results andmCCA+jICA results. VBM results comparing GM (A) and FA (B) between the OCD patients and controls
are visualized over sagittal slices from the x-coordinate of -52 mm (left hemisphere) to 52 mm (right hemisphere) with a threshold of |t| > 1.99, which
corresponds uncorrected p-value < 0.05. For both GM and FA, the regions with higher values in OCD than HC are shown in red and the opposites are shown
in cyan. The GM #2 (A) and FA #2 (B) components showing significant group differences are superimposed in white (Z = 2, OCD > HC) and black (Z = -2,
OCD < HC) contours.

doi:10.1371/journal.pone.0127118.g005
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mCCA+jICA results comes from the complexity of the covariance structures. That is, because
multiple components affect the intensity of a certain voxel, a difference in the contribution of a
certain source is not necessarily apparent from the mixture of all sources.

For an interesting example, a gray matter abnormality (OCD<HC) in the brainstem found
by VBM (Fig 5A, x = -4, 4 mm) did not overlap the IC of GM #2, which showed aberrant mix-
ing coefficients in the OCD patients. On the other hand, a similar gray matter abnormality
(OCD<HC) in the bilateral lingual gyri found by VBM (Fig 5A, x = -28, 28 mm) exactly con-
verges to the IC of GM #2 (Fig 3C, cluster #17/18). That is, by means of the mCCA+jICA anal-
ysis, it was shown that the brainstem abnormality was not related to the lingual gyral
abnormality and other major regions of the joint ICs (GM #2 and FA #2). As shown here, it is
demonstrated that the multivariate analysis can provide additional information about the in-
terrelationship of the abnormalities.

Altered structural networks in OCD patients
Using the mCCA+jICA framework, we found one altered pair of cross-modal networks of neu-
ronal structures in the OCD patients in relation to the healthy controls. To our best knowledge,
the current paper is the first study that reports the covariance structures of anatomical alter-
ations in the unmedicated patients with OCD using a multivariate fusion method on multi-
modal neuroimaging data. The second joint components (GM #2 and FA #2) showed
significant cross-modal alteration with high congruence in terms of spatial dispositions. As ex-
pected, the alterations in the frontal regions were found in the GM #2 (Fig 3C, cluster #6/7/9/
12/21) and the FA #2 (Fig 3D, cluster #5). The altered gray matter network (GM #2) extended
to the dorsolateral prefrontal cortex (cluster #6/12) [70], frontal pole (cluster #21) [71], and the
cingulate cortex (cluster #7) [72], which were also reported in previous univariate studies. In
addition, we also found the anomaly in the forceps minor, which has been consistently found
to be deviant from the healthy controls in adult and adolescent patients with OCD [12, 15, 17–
19, 73–77]. In particular, our group previously demonstrated smaller FA values in the fronto-
callosal projections in unmedicated OCD patients based on a fiber bundle tractography [13].
In the present study, we also found irregularities in the anterior part of corpus callosum as well
as the subcortical projections in congruence with the white matter abnormalities in the previ-
ous findings. Moreover, the FA #2 network included the white matter near the right pallidum
and thalamus, which might be directly related to the striatal connectivity in the CST theory.
Our present findings not only agree with the previous literature, but also quantitatively connect
the abnormalities in the gray and white matter.

It should be also noted that the second joint components involve other brain regions than
the “classical” frontal cortex and subcortical structures that have been emphasized by the CST
hypothesis [4]. The GM #2 component showed alteration in the bilateral occipital cortices in-
cluding lingual gyri (Fig 3C, GM #2, cluster #15/18) and the FA #2 component showed white
matter abnormality in the bilateral superior longitudinal fasciculi nearby the gray matter alter-
ation (Fig 3D, FA #2, cluster #1). The abnormality of the occipital cortex was previously found
in terms of a local surface area in the drug-naïve OCD patients [78]. The disorganization of su-
perior longitudinal fasciculi implicated by smaller FA values was also reported in previous DTI
studies [77, 79]. The possible involvement of occipital lobes was mentioned with the commonly
known clinical observation of that OCD patients are disturbed by vivid, intrusive visual imag-
ery with unpleasant contents and the common deficits of OCD patients in decision-making
and visuospatial tasks [79].

Furthermore, the GM #2 extended to the parietal cortices [7, 72, 80], the temporal cortices
[44, 81] and the cerebella [7, 8, 81] in favor of the reconceptualization of the underlying
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mechanism of OCD with the growing bodies of neuroimaging evidences [82]. Especially, we
found the multimodal components spanning the large area of cerebella, in which the multi-
site VBM study reported higher regional volume of the gray matter [16]. Besides the well-
known functionality of the cerebellum in a fine adjustment of motor actions, the involvement
in cognitive and emotional processes has been proposed based on anatomical and functional
neuroimaging studies with clinical and healthy populations [83, 84]. More recently, using a
surface-based morphometry, the local volume of the cerebellum was found to positively cor-
relate with the comorbidity of OCD in the patients with Tourette syndrome [85]. Taken to-
gether, the cerebellar aspect of the joint components may have an implication of altered
engagement in the OC symptoms.

Differential correlations with the subscores and subdimensions of OC
symptoms
Within the OCD patients, we did not find any significant rank correlations of the mixing coef-
ficients with the Y-BOCS total score and the subscores of obsession and compulsion, respec-
tively (q> 0.05). However, we found significant rank correlation with the ‘harm/checking’
subdimensional score (OCD-FA #2 and OCD-FA #6; q! 0.05).

As noted earlier, the group-specific components should be distinguished from the common
components since they could be spatially different and work as different bases. The common
FA #2 behaved as a source that distinguish the OCD patients from the healthy controls while
the OCD-FA #2 served as a source that can differentiate the patients with considerable severity
in ‘harm/checking’ subdimension from the other patients with different subtypes. This can be
explained by the differences in spatial configuration of the common and the group-specific ICs
(Fig 4E).

The contributions to the white matter near the left putamen, the left thalamus and the right
caudate (Fig 4C, OCD-FA #2, cluster #7/8) and the contributions to the bilateral anterior tha-
lamic radiations (Fig 4D, OCD-FA #6, cluster #3/5) were heightened with the increasing
‘harm/checking’ subdimension. The subcortical involvement has been considered as crucial in
the pathogenesis of OCD [4]. In a mice model, cortico-striatal stimulation repeated over several
days evoked OCD-like behaviors that prolonged more than two weeks after the termination of
stimulation [86]. Even more directly, the functional role of the associate-limbic area and the
subthalamic nucleus in checking behavior of OCD patients was recently demonstrated using
microelectrode recording during a surgery for deep brain stimulation [87]. We believe our
findings of the correlations of the OCD-specific ICs including the striatal projections
(OCD-FA #2) and the thalamic radiation (OCD-FA #6) with the ‘harm/checking’ subdimen-
sion reflect the altered organization of the subcortical connectivities in particular association
with the subdimension of OC symptoms.

Finally, we also found lower contribution to the brainstem (Fig 4D, OCD-FA #6, cluster #1)
and the left corticospinal tract (Fig 4C, OCD-FA #2, cluster #1; Fig 4D, OCD-FA #6, cluster #2)
with the increasing ‘harm/checking’ subdimension. Although there are few neuroimaging studies
reporting the alterations in the brainstem and its projection [17, 88], Gilbert and colleagues found
the regional volume of the gray matter in the left midbrain negatively correlating with the severity
of checking behavior [88], which can be related to the current finding of the negative correlation
between the OCD-specific white matter component and the ‘harm/checking’ subdimension.

Limitations
Although our study provides novel findings on the structural networks in the OCD patients
using an advanced multimodal method, it also bears some limitations. First, in contrast to the
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previous structural studies on the Schizophrenia patients using an ICA-fashion multivariate
method [43, 52, 89], which employed hundreds of subjects, the sample size of the current study
is relatively limited. Since the higher degrees of freedom can be beneficial in decomposing bio-
logically interpretable bases, not only the robustness but also the validity of the current findings
can be even improved with a greater number of samples. A recent multi-site VBM study can be
an example to cope with the scarcity of the clinical samples [16], although additional caution
and elaborated techniques must be accompanied.

Second, a detailed assessment of OC symptoms, such as Dimensional Y-BOCS [49], Obses-
sive-Compulsive Inventory—Revised [90] and Padua Inventory [50], was unavailable for the
current neuroimaging dataset. Since the importance of differentiating multiple dimensions of
the OC symptoms has increasingly drawn attention in order to deal with the heterogeneity of
the clinical population, it is critical to quantify the symptoms into multivariate measures rather
than summing the all details into a representative scalar measure [44, 82]. Therefore it is
strongly desirable to include an exhaustive battery of symptom assessments in future multi-
modal neuroimaging studies.

Conclusion
In summary, we investigated gray and white matter structural networks in the OCD patients
using the fusion method called “mCCA+jICA”. From GM and FA features, the six joint inde-
pendent components were found, which highly correlated across imaging modalities. A pair of
gray and white matter networks spanning over the occipital and parietal cortices, the corpus
callosum and the cerebella was found to be altered in the patients with OCD in terms of the
contribution to the morphological measurements. Moreover, a particular subdimensional
score of OC symptoms was correlated with the loading coefficients of two OCD-specific white
matter components including subcortical projections. In future works, the present fusion
method can be more useful with a larger sample size and comprehensive subdimensional
scores to disentangle the complex pathology of OCD [91].
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(PDF)

Author Contributions
Conceived and designed the experiments: S-GKWHJ JSK. Performed the experiments: SNK
JHJ. Analyzed the data: S-GK. Contributed reagents/materials/analysis tools: S-GK. Wrote the
paper: S-GKWHJ JSK.

References
1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th Edition

(DSM-IV). Washington, DC: American Psychiatric Association Publishing; 1994.

2. Cummings JL. Frontal-Subcortical Circuits and Human-Behavior. Arch Neurol. 1993; 50(8):873–80.
ISI:A1993LR02800018. PMID: 8352676

3. Kwon JS, Jang JH, Choi JS, Kang DH. Neuroimaging in obsessive-compulsive disorder. Expert review
of neurotherapeutics. 2009; 9(2):255–69. doi: 10.1586/14737175.9.2.255 PMID: 19210199.

4. Saxena S, Brody AL, Schwartz JM, Baxter LR. Neuroimaging and frontal-subcortical circuitry in obses-
sive-compulsive disorder. Brit J Psychiat. 1998; 173:26–37. ISI:000075404400006.

5. Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disor-
der. Psychiatric Clin N Am. 2000; 23(3):563–86. ISI:000089064100008.

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0127118.s001
http://www.ncbi.nlm.nih.gov/pubmed/8352676
http://dx.doi.org/10.1586/14737175.9.2.255
http://www.ncbi.nlm.nih.gov/pubmed/19210199


6. Szeszko PR, Christian C, MacMaster F, Lencz T, Mirza Y, Taormina SP, et al. Gray matter structural al-
terations in psychotropic drug-naive pediatric obsessive-compulsive disorder: An optimized voxel-
based morphometry study. The American journal of psychiatry. 2008; 165(10):1299–307. doi: 10.1176/
Appi.Ajp.2008.08010033 ISI:000259703800017. PMID: 18413702

7. Kim JJ, Lee MC, Kim J, Kim IY, Kim SI, Han MH, et al. Grey matter abnormalities in obsessive-compul-
sive disorder—Statistical parametric mapping of segmented magnetic resonance images. Brit J Psy-
chiat. 2001; 179:330–4. ISI:000171814600009. PMID: 11581113

8. Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, et al. Mapping structural brain al-
terations in obsessive-compulsive disorder. Archives of general psychiatry. 2004; 61(7):720–30. Epub
2004/07/09. doi: 10.1001/archpsyc.61.7.720 PMID: 15237084.

9. Riffkin J, Yucel M, Maruff P, Wood SJ, Soulsby B, Olver J, et al. A manual and automated MRI study of
anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder:
comparison with healthy controls and patients with schizophrenia. Psychiatry research. 2005; 138
(2):99–113. Epub 2005/03/16. doi: 10.1016/j.pscychresns.2004.11.007 PMID: 15766634.

10. Ashburner J, Friston KJ. Voxel-based morphometry—The methods. NeuroImage. 2000; 11(6):805–21.
doi: 10.1006/Nimg.2000.0582 ISI:000087963600018. PMID: 10860804

11. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive
disorder. Brit J Psychiat. 2009; 195(5):393–402. doi: 10.1192/Bjp.Bp.108.055046
ISI:000272274100004. PMID: 19880927

12. Bora E, Harrison BJ, Fornito A, Cocchi L, Pujol J, Fontenelle LF, et al. White matter microstructure in
patients with obsessive-compulsive disorder. J Psychiatr Neurosci. 2011; 36(1):42–6. doi: 10.1503/
Jpn.100082 ISI:000285461300006. PMID: 21118658

13. Oh JS, Jang JH, JungWH, Kang DH, Choi JS, Choi CH, et al. Reduced fronto-callosal fiber integrity in
unmedicated OCD patients: A diffusion tractography study. Hum Brain Mapp. 2011; 33(10):2441–52.
Epub 2011/09/17. doi: 10.1002/hbm.21372 PMID: 21922600.

14. Cannistraro PA, Makris N, Howard JD, Wedig MM, Hodge SM,Wilhelm S, et al. A diffusion tensor imag-
ing study of white matter tracts in obsessive compulsive disorder. Biol Psychiat. 2005; 57(8):10S–S.
ISI:000228338600035.

15. Menzies L, Williams GB, Chamberlain SR, Ooi C, Fineberg N, Suckling J, et al. White matter abnormali-
ties in patients with obsessive-compulsive disorder and their first-degree relatives. The American jour-
nal of psychiatry. 2008; 165(10):1308–15. doi: 10.1176/appi.ajp.2008.07101677
WOS:000259703800018. PMID: 18519525

16. deWit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchon JM, et al. Multicenter voxel-
based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. The
American journal of psychiatry. 2014; 171(3):340–9. doi: 10.1176/appi.ajp.2013.13040574 PMID:
24220667.

17. Zarei M, Mataix-Cols D, Heyman I, Hough M, Doherty J, Burge L, et al. Changes in Gray Matter Volume
andWhite Matter Microstructure in Adolescents with Obsessive-Compulsive Disorder. Biol Psychiat.
2011; 70(11):1083–90. doi: 10.1016/J.Biopsych.2011.06.032 ISI:000296578800013. PMID: 21903200

18. Radua J, Grau M, van den Heuvel OA, Thiebaut de Schotten M, Stein DJ, Canales-Rodriguez EJ, et al.
Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive-compulsive disorder.
Neuropsychopharmacol. 2014; 39(7):1547–57. doi: 10.1038/npp.2014.5 PMID: 24407265; PubMed
Central PMCID: PMC4023155.

19. Peng Z, Shi F, Shi C, Miao G, Yang Q, GaoW, et al. Structural and Diffusion Property Alterations in Un-
affected Siblings of Patients with Obsessive-Compulsive Disorder. PloS one. 2014; 9(1):e85663. doi:
10.1371/journal.pone.0085663 PMID: 24489665

20. Calhoun VD, Adali T, Giuliani NR, Pekar JJ, Kiehl KA, Pearlson GD. Method for multimodal analysis of
independent source differences in schizophrenia: combining gray matter structural and auditory oddball
functional data. Hum Brain Mapp. 2006; 27(1):47–62. Epub 2005/08/19. doi: 10.1002/hbm.20166
PMID: 16108017.

21. Correa NM, Li YO, Adali T, Calhoun VD. Canonical Correlation Analysis for Feature-Based Fusion of
Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophre-
nia. IEEE J Sel Top Sign Proces. 2008; 2(6):998–1007. Epub 2009/10/17. doi: 10.1109/JSTSP.2008.
2008265 PMID: 19834573; PubMed Central PMCID: PMC2761661.

22. Li YO, Adali T, WangW, Calhoun VD. Joint Blind Source Separation by Multi-set Canonical Correlation
Analysis. IEEE transactions on signal processing: a publication of the IEEE Signal Processing Society.
2009; 57(10):3918–29. doi: 10.1109/TSP.2009.2021636 PMID: 20221319; PubMed Central PMCID:
PMC2835373.

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 19 / 23

http://dx.doi.org/10.1176/Appi.Ajp.2008.08010033
http://dx.doi.org/10.1176/Appi.Ajp.2008.08010033
http://www.ncbi.nlm.nih.gov/pubmed/18413702
http://www.ncbi.nlm.nih.gov/pubmed/11581113
http://dx.doi.org/10.1001/archpsyc.61.7.720
http://www.ncbi.nlm.nih.gov/pubmed/15237084
http://dx.doi.org/10.1016/j.pscychresns.2004.11.007
http://www.ncbi.nlm.nih.gov/pubmed/15766634
http://dx.doi.org/10.1006/Nimg.2000.0582
http://www.ncbi.nlm.nih.gov/pubmed/10860804
http://dx.doi.org/10.1192/Bjp.Bp.108.055046
http://www.ncbi.nlm.nih.gov/pubmed/19880927
http://dx.doi.org/10.1503/Jpn.100082
http://dx.doi.org/10.1503/Jpn.100082
http://www.ncbi.nlm.nih.gov/pubmed/21118658
http://dx.doi.org/10.1002/hbm.21372
http://www.ncbi.nlm.nih.gov/pubmed/21922600
http://dx.doi.org/10.1176/appi.ajp.2008.07101677
http://www.ncbi.nlm.nih.gov/pubmed/18519525
http://dx.doi.org/10.1176/appi.ajp.2013.13040574
http://www.ncbi.nlm.nih.gov/pubmed/24220667
http://dx.doi.org/10.1016/J.Biopsych.2011.06.032
http://www.ncbi.nlm.nih.gov/pubmed/21903200
http://dx.doi.org/10.1038/npp.2014.5
http://www.ncbi.nlm.nih.gov/pubmed/24407265
http://dx.doi.org/10.1371/journal.pone.0085663
http://www.ncbi.nlm.nih.gov/pubmed/24489665
http://dx.doi.org/10.1002/hbm.20166
http://www.ncbi.nlm.nih.gov/pubmed/16108017
http://dx.doi.org/10.1109/JSTSP.2008.2008265
http://dx.doi.org/10.1109/JSTSP.2008.2008265
http://www.ncbi.nlm.nih.gov/pubmed/19834573
http://dx.doi.org/10.1109/TSP.2009.2021636
http://www.ncbi.nlm.nih.gov/pubmed/20221319


23. Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis and a population
simulation. NeuroImage. 2005; 24(1):163–73. doi: 10.1016/j.neuroimage.2004.07.045 PMID:
15588607.

24. Lerch JP, Carroll JB, Dorr A, Spring S, Evans AC, Hayden MR, et al. Cortical thickness measured from
MRI in the YAC128 mouse model of Huntington's disease. NeuroImage. 2008; 41(2):243–51. doi: 10.
1016/j.neuroimage.2008.02.019 PMID: 18387826.

25. He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical
thickness fromMRI. Cereb Cortex. 2007; 17(10):2407–19. doi: 10.1093/cercor/bhl149 PMID:
17204824.

26. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC. Revealing modular architecture of human brain
structural networks by using cortical thickness fromMRI. Cereb Cortex. 2008; 18(10):2374–81. doi: 10.
1093/cercor/bhn003 PMID: 18267952; PubMed Central PMCID: PMC2733312.

27. He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, et al. Impaired small-world efficiency in
structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain. 2009;
132(Pt 12):3366–79. Epub 2009/05/15. doi: 10.1093/brain/awp089 PMID: 19439423; PubMed Central
PMCID: PMC2792366.

28. Kim SG, JungWH, Kim SN, Jang JH, Kwon JS. Disparity between dorsal and ventral networks in pa-
tients with obsessive-compulsive disorder: evidence revealed by graph theoretical analysis based on
cortical thickness fromMRI. Frontiers in human neuroscience. 2013; 7:302. doi: 10.3389/fnhum.2013.
00302 PMID: 23840184; PubMed Central PMCID: PMC3699763.

29. Worsley KJ, Taylor JE, Tomaiuolo F, Lerch J. Unified univariate and multivariate random field theory.
NeuroImage. 2004; 23 Suppl 1:S189–95. Epub 2004/10/27. doi: 10.1016/j.neuroimage.2004.07.026
PMID: 15501088.

30. Evans AC. Networks of anatomical covariance. NeuroImage. 2013; 80:489–504. doi: 10.1016/j.
neuroimage.2013.05.054 PMID: 23711536.

31. Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, et al. Patterns of coordinated
anatomical change in human cortical development: a longitudinal neuroimaging study of maturational
coupling. Neuron. 2011; 72(5):873–84. doi: 10.1016/j.neuron.2011.09.028 PMID: 22153381.

32. Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S, et al. Developmental changes in or-
ganization of structural brain networks. Cereb Cortex. 2013; 23(9):2072–85. doi: 10.1093/cercor/
bhs187 PMID: 22784607; PubMed Central PMCID: PMC3729193.

33. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. The Jour-
nal of neuroscience: the official journal of the Society for Neuroscience. 2005; 25(36):8303–10. doi: 10.
1523/JNEUROSCI.0357-05.2005 PMID: 16148238.

34. Lerch JP, Worsley K, ShawWP, Greenstein DK, Lenroot RK, Giedd J, et al. Mapping anatomical corre-
lations across cerebral cortex (MACACC) using cortical thickness fromMRI. NeuroImage. 2006; 31
(3):993–1003. doi: 10.1016/j.neuroimage.2006.01.042 PMID: 16624590.

35. Kim SG, Lee H, Chung MK, Hanson JL, Avants BB, Gee JC, et al. Agreement between the white matter
connectivity based on the tensor-based morphometry and the volumetric white matter parcellations
based on diffusion tensor imaging. Proceedings of IEEE International Symposium on Biomedical Imag-
ing: from nano to macro. 2012:42–5. doi: 10.1109/ISBI.2012.6235479 PMID: 24177264; PubMed Cen-
tral PMCID: PMC3811041.

36. Kim SG, Chung MK, Hanson JL, Avants BB, Gee JC, Davidson RJ, et al. Structural connectivity via the
tensor-basedmorphometry. Proceedings of IEEE International Symposium on Biomedical Imaging:
from nano to macro. 2011:808–11. doi: 10.1109/ISBI.2011.5872528 PMID: 24177222; PubMed Cen-
tral PMCID: PMC3811040.

37. Chung MK, Hanson JL, Lee H, Adluru N, Alexander AL, Davidson RJ, et al. Persistent homological
sparse network approach to detecting white matter abnormality in maltreated children: MRI and DTI
multimodal study. Medical image computing and computer-assisted intervention: MICCAI International
Conference on Medical Image Computing and Computer-Assisted Intervention. 2013; 16(Pt 1):300–7.
PMID: 24505679; PubMed Central PMCID: PMC4133555.

38. Li YO, Yang FG, Nguyen CT, Cooper SR, LaHue SC, Venugopal S, et al. Independent component anal-
ysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Hum
Brain Mapp. 2012; 33(6):1431–51. doi: 10.1002/Hbm.21292WOS:000303857200015. PMID:
21567660

39. Groves AR, Beckmann CF, Smith SM,Woolrich MW. Linked independent component analysis for multi-
modal data fusion. NeuroImage. 2011; 54(3):2198–217. doi: 10.1016/J.Neuroimage.2010.09.073
WOS:000286302000043. PMID: 20932919

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 20 / 23

http://dx.doi.org/10.1016/j.neuroimage.2004.07.045
http://www.ncbi.nlm.nih.gov/pubmed/15588607
http://dx.doi.org/10.1016/j.neuroimage.2008.02.019
http://dx.doi.org/10.1016/j.neuroimage.2008.02.019
http://www.ncbi.nlm.nih.gov/pubmed/18387826
http://dx.doi.org/10.1093/cercor/bhl149
http://www.ncbi.nlm.nih.gov/pubmed/17204824
http://dx.doi.org/10.1093/cercor/bhn003
http://dx.doi.org/10.1093/cercor/bhn003
http://www.ncbi.nlm.nih.gov/pubmed/18267952
http://dx.doi.org/10.1093/brain/awp089
http://www.ncbi.nlm.nih.gov/pubmed/19439423
http://dx.doi.org/10.3389/fnhum.2013.00302
http://dx.doi.org/10.3389/fnhum.2013.00302
http://www.ncbi.nlm.nih.gov/pubmed/23840184
http://dx.doi.org/10.1016/j.neuroimage.2004.07.026
http://www.ncbi.nlm.nih.gov/pubmed/15501088
http://dx.doi.org/10.1016/j.neuroimage.2013.05.054
http://dx.doi.org/10.1016/j.neuroimage.2013.05.054
http://www.ncbi.nlm.nih.gov/pubmed/23711536
http://dx.doi.org/10.1016/j.neuron.2011.09.028
http://www.ncbi.nlm.nih.gov/pubmed/22153381
http://dx.doi.org/10.1093/cercor/bhs187
http://dx.doi.org/10.1093/cercor/bhs187
http://www.ncbi.nlm.nih.gov/pubmed/22784607
http://dx.doi.org/10.1523/JNEUROSCI.0357-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.0357-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16148238
http://dx.doi.org/10.1016/j.neuroimage.2006.01.042
http://www.ncbi.nlm.nih.gov/pubmed/16624590
http://dx.doi.org/10.1109/ISBI.2012.6235479
http://www.ncbi.nlm.nih.gov/pubmed/24177264
http://dx.doi.org/10.1109/ISBI.2011.5872528
http://www.ncbi.nlm.nih.gov/pubmed/24177222
http://www.ncbi.nlm.nih.gov/pubmed/24505679
http://dx.doi.org/10.1002/Hbm.21292
http://www.ncbi.nlm.nih.gov/pubmed/21567660
http://dx.doi.org/10.1016/J.Neuroimage.2010.09.073
http://www.ncbi.nlm.nih.gov/pubmed/20932919


40. Sui J, Huster R, Yu Q, Segall JM, Calhoun VD. Function-structure associations of the brain: evidence
frommultimodal connectivity and covariance studies. NeuroImage. 2014; 102 Pt 1:11–23. doi: 10.
1016/j.neuroimage.2013.09.044 PMID: 24084066; PubMed Central PMCID: PMC3969780.

41. Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson GD, et al. Combination of Resting State fMRI, DTI, and
sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA. Frontiers in human neuroscience.
2013; 7:235. doi: 10.3389/fnhum.2013.00235 PMID: 23755002; PubMed Central PMCID:
PMC3666029.

42. Sui J, Pearlson G, Caprihan A, Adali T, Kiehl KA, Liu J, et al. Discriminating schizophrenia and bipolar
disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model. NeuroImage. 2011; 57(3):839–
55. Epub 2011/06/07. doi: 10.1016/j.neuroimage.2011.05.055 PMID: 21640835; PubMed Central
PMCID: PMC3129373.

43. Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. Source-Based Morphometry: The Use of Inde-
pendent Component Analysis to Identify Gray Matter Differences With Application to Schizophrenia.
Hum Brain Mapp. 2009; 30(3):711–24. doi: 10.1002/Hbm.20540 ISI:000264015900002. PMID:
18266214

44. van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HB, et al. The
major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural
systems. Brain. 2009; 132(Pt 4):853–68. Epub 2008/10/28. doi: 10.1093/brain/awn267 PMID:
18952675.

45. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Ar-
chives of general psychiatry. 1961; 4:561–71. Epub 1961/06/01. PMID: 13688369.

46. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric
properties. Journal of consulting and clinical psychology. 1988; 56(6):893–7. Epub 1988/12/01. PMID:
3204199.

47. GoodmanWK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, et al. The Yale-Brown
Obsessive Compulsive Scale. I. Development, use, and reliability. Archives of general psychiatry.
1989; 46(11):1006–11. Epub 1989/11/01. PMID: 2684084.

48. Mataix-Cols D, Rauch SL, Manzo PA, Jenike MA, Baer L. Use of factor-analyzed symptom dimensions
to predict outcome with serotonin reuptake inhibitors and placebo in the treatment of obsessive-com-
pulsive disorder. The American journal of psychiatry. 1999; 156(9):1409–16. Epub 1999/09/15. PMID:
10484953.

49. Rosario-Campos MC, Miguel EC, Quatrano S, Chacon P, Ferrao Y, Findley D, et al. The Dimensional
Yale-Brown Obsessive-Compulsive Scale (DY-BOCS): an instrument for assessing obsessive-compul-
sive symptom dimensions. Mol Psychiatry. 2006; 11(5):495–504. PMID: 16432526

50. Sanavio E. Obsessions and compulsions: The Padua inventory. Behav Res Ther. 1988; 26(2):169–77.
doi: 10.1016/0005-7967(88)90116-7 PMID: 3365207

51. Sui J, Adali T, Pearlson G, Yang H, Sponheim SR, White T, et al. A CCA+ICA based model for multi-
task brain imaging data fusion and its application to schizophrenia. NeuroImage. 2010; 51(1):123–34.
doi: 10.1016/j.neuroimage.2010.01.069 PMID: 20114081; PubMed Central PMCID: PMC2847043.

52. Xu L, Pearlson G, Calhoun VD. Joint source based morphometry identifies linked gray and white matter
group differences. NeuroImage. 2009; 44(3):777–89. doi: 10.1016/j.neuroimage.2008.09.051
ISI:000262301500018. PMID: 18992825

53. Sui J, Adali T, Yu Q, Chen J, Calhoun VD. A review of multivariate methods for multimodal fusion of
brain imaging data. Journal of neuroscience methods. 2012; 204(1):68–81. doi: 10.1016/j.jneumeth.
2011.10.031 PMID: 22108139; PubMed Central PMCID: PMC3690333.

54. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. NeuroImage. 2012; 62
(2):782–90. Epub 2011/10/08. doi: 10.1016/j.neuroimage.2011.09.015 PMID: 21979382.

55. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17(3):143–55. doi: 10.1002/
Hbm.10062 ISI:000178994100001. PMID: 12391568

56. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-
weighted images. Nmr Biomed. 1995; 8(7–8):333–44. ISI:A1995UL58700006. PMID: 8732183

57. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morpho-
metric study of ageing in 465 normal adult human brains. NeuroImage. 2001; 14(1):21–36. Epub 2001/
08/30. doi: 10.1006/nimg.2001.0786 PMID: 11525331.

58. Chung MK, Worsley KJ, Paus T, Cherif C, Collins DL, Giedd JN, et al. A unified statistical approach to
deformation-based morphometry. NeuroImage. 2001; 14(3):595–606. Epub 2001/08/17. doi: 10.1006/
nimg.2001.0862 PMID: 11506533.

59. Ashburner J, Friston KJ. Why voxel-basedmorphometry should be used. NeuroImage. 2001; 14
(6):1238–43. doi: 10.1006/Nimg.2001.0961 ISI:000172524500001. PMID: 11707080

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 21 / 23

http://dx.doi.org/10.1016/j.neuroimage.2013.09.044
http://dx.doi.org/10.1016/j.neuroimage.2013.09.044
http://www.ncbi.nlm.nih.gov/pubmed/24084066
http://dx.doi.org/10.3389/fnhum.2013.00235
http://www.ncbi.nlm.nih.gov/pubmed/23755002
http://dx.doi.org/10.1016/j.neuroimage.2011.05.055
http://www.ncbi.nlm.nih.gov/pubmed/21640835
http://dx.doi.org/10.1002/Hbm.20540
http://www.ncbi.nlm.nih.gov/pubmed/18266214
http://dx.doi.org/10.1093/brain/awn267
http://www.ncbi.nlm.nih.gov/pubmed/18952675
http://www.ncbi.nlm.nih.gov/pubmed/13688369
http://www.ncbi.nlm.nih.gov/pubmed/3204199
http://www.ncbi.nlm.nih.gov/pubmed/2684084
http://www.ncbi.nlm.nih.gov/pubmed/10484953
http://www.ncbi.nlm.nih.gov/pubmed/16432526
http://dx.doi.org/10.1016/0005-7967(88)90116-7
http://www.ncbi.nlm.nih.gov/pubmed/3365207
http://dx.doi.org/10.1016/j.neuroimage.2010.01.069
http://www.ncbi.nlm.nih.gov/pubmed/20114081
http://dx.doi.org/10.1016/j.neuroimage.2008.09.051
http://www.ncbi.nlm.nih.gov/pubmed/18992825
http://dx.doi.org/10.1016/j.jneumeth.2011.10.031
http://dx.doi.org/10.1016/j.jneumeth.2011.10.031
http://www.ncbi.nlm.nih.gov/pubmed/22108139
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21979382
http://dx.doi.org/10.1002/Hbm.10062
http://dx.doi.org/10.1002/Hbm.10062
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://www.ncbi.nlm.nih.gov/pubmed/8732183
http://dx.doi.org/10.1006/nimg.2001.0786
http://www.ncbi.nlm.nih.gov/pubmed/11525331
http://dx.doi.org/10.1006/nimg.2001.0862
http://dx.doi.org/10.1006/nimg.2001.0862
http://www.ncbi.nlm.nih.gov/pubmed/11506533
http://dx.doi.org/10.1006/Nimg.2001.0961
http://www.ncbi.nlm.nih.gov/pubmed/11707080


60. Li YO, Adali T, WangW, Calhoun VD. Joint Blind Source Separation by Multiset Canonical Correlation
Analysis. Ieee T Signal Proces. 2009; 57(10):3918–29. doi: 10.1109/Tsp.2009.2021636
ISI:000269838300015. PMID: 20221319

61. Correa NM, Adali T, Li YO, Calhoun VD. Canonical Correlation Analysis for Data Fusion and Group In-
ferences: Examining applications of medical imaging data. IEEE signal processing magazine. 2010; 27
(4):39–50. Epub 2010/08/14. doi: 10.1109/MSP.2010.936725 PMID: 20706554; PubMed Central
PMCID: PMC2919827.

62. Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic
resonance Imaging data. Hum Brain Mapp. 2007; 28(11):1251–66. doi: 10.1002/Hbm.20359
ISI:000250819900014. PMID: 17274023

63. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolu-
tion. Neural computation. 1995; 7(6):1129–59. Epub 1995/11/01. PMID: 7584893.

64. Jarque CM, Bera AK. A Test for Normality of Observations and Regression Residuals. Int Stat Rev.
1987; 55(2):163–72. doi: 10.2307/1403192WOS:A1987J533300003.

65. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using
the false discovery rate. NeuroImage. 2002; 15(4):870–8. doi: 10.1006/Nimg.2001.1037
ISI:000174689100011. PMID: 11906227

66. Gelman A. A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. Int Stat
Rev. 2003; 71(2):369–82. WOS:000184956000013.

67. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
NeuroImage. 2006; 31(3):968–80. Epub 2006/03/15. doi: 10.1016/j.neuroimage.2006.01.021 PMID:
16530430.

68. Frazier JA, Chiu S, Breeze JL, Makris N, Lange N, Kennedy DN, et al. Structural brain magnetic reso-
nance imaging of limbic and thalamic volumes in pediatric bipolar disorder. The American journal of
psychiatry. 2005; 162(7):1256–65. Epub 2005/07/05. doi: 10.1176/appi.ajp.162.7.1256 PMID:
15994707.

69. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability maps in stereotaxic spaces:
analyses of white matter anatomy and tract-specific quantification. NeuroImage. 2008; 39(1):336–47.
Epub 2007/10/13. doi: 10.1016/j.neuroimage.2007.07.053 PMID: 17931890; PubMed Central PMCID:
PMC2724595.

70. Rotge JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, et al. Gray Matter Alterations in Obses-
sive-Compulsive Disorder: An Anatomic Likelihood Estimation Meta-Analysis. Neuropsychopharmacol.
2010; 35(3):686–91. doi: 10.1038/Npp.2009.175 ISI:000273635100010.

71. Huyser C, van den Heuvel OA, Wolters LH, de Haan E, Boer F, Veltman DJ. Increased orbital frontal
gray matter volume after cognitive behavioural therapy in paediatric obsessive compulsive disorder.
The world journal of biological psychiatry: the official journal of the World Federation of Societies of Bio-
logical Psychiatry. 2013; 14(4):319–31. doi: 10.3109/15622975.2012.674215 PMID: 22746998.

72. Valente AA, Miguel EC, Castro CC, Amaro E, Duran FLS, Buchpiguel CA, et al. Regional gray matter
abnormalities in obsessive-compulsive disorder: A voxel-basedmorphometry study. Biol Psychiat.
2005; 58(6):479–87. doi: 10.1016/J.Biopsych.2005.04.021 ISI:000232296000008. PMID: 15978549

73. Silk T, Chen J, Seal M, Vance A. White matter abnormalities in pediatric obsessive-compulsive disor-
der. Psychiat Res-Neuroim. 2013; 213(2):154–60. doi: 10.1016/J.Pscychresns.2013.04.003
WOS:000320757200009. PMID: 23746614

74. Koch K, Wagner G, Schachtzabel C, Schultz CC, Straube T, Gullmar D, et al. White matter structure
and symptom dimensions in obsessive-compulsive disorder. Journal of psychiatric research. 2012; 46
(2):264–70. doi: 10.1016/J.Jpsychires.2011.10.016WOS:000301220700018. PMID: 22099866

75. Nakamae T, Narumoto J, Sakai Y, Nishida S, Yamada K, Nishimura T, et al. Diffusion tensor imaging
and tract-based spatial statistics in obsessive-compulsive disorder. Journal of psychiatric research.
2011; 45(5):687–90. doi: 10.1016/J.Jpsychires.2010.09.016WOS:000291171100015. PMID:
20965515

76. Saito Y, Nobuhara K, Okugawa G, Takase K, Tajika A, Sugimoto T, et al. White matter abnormalities in
obsessive-compulsive disorder: A diffusion tensor imaging study. European psychiatry: the journal of
the Association of European Psychiatrists. 2008; 23:S353–S. doi: 10.1016/J.Eurpsy.2008.01.1221
WOS:000254987801496.

77. Szeszko PR, Ardekani BA, Ashtari M, Malhotra AK, Robinson DG, Bilder RM, et al. White matter abnor-
malities in obsessive-compulsive disorder—A diffusion tensor imaging study. Archives of general psy-
chiatry. 2005; 62(7):782–90. ISI:000230352100013. PMID: 15997020

78. Venkatasubramanian G, Zutshi A, Jindal S, Srikanth SG, Kovoor JM, Kumar JK, et al. Comprehensive
evaluation of cortical structure abnormalities in drug-naive, adult patients with obsessive-compulsive

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 22 / 23

http://dx.doi.org/10.1109/Tsp.2009.2021636
http://www.ncbi.nlm.nih.gov/pubmed/20221319
http://dx.doi.org/10.1109/MSP.2010.936725
http://www.ncbi.nlm.nih.gov/pubmed/20706554
http://dx.doi.org/10.1002/Hbm.20359
http://www.ncbi.nlm.nih.gov/pubmed/17274023
http://www.ncbi.nlm.nih.gov/pubmed/7584893
http://dx.doi.org/10.2307/1403192
http://dx.doi.org/10.1006/Nimg.2001.1037
http://www.ncbi.nlm.nih.gov/pubmed/11906227
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1176/appi.ajp.162.7.1256
http://www.ncbi.nlm.nih.gov/pubmed/15994707
http://dx.doi.org/10.1016/j.neuroimage.2007.07.053
http://www.ncbi.nlm.nih.gov/pubmed/17931890
http://dx.doi.org/10.1038/Npp.2009.175
http://dx.doi.org/10.3109/15622975.2012.674215
http://www.ncbi.nlm.nih.gov/pubmed/22746998
http://dx.doi.org/10.1016/J.Biopsych.2005.04.021
http://www.ncbi.nlm.nih.gov/pubmed/15978549
http://dx.doi.org/10.1016/J.Pscychresns.2013.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23746614
http://dx.doi.org/10.1016/J.Jpsychires.2011.10.016
http://www.ncbi.nlm.nih.gov/pubmed/22099866
http://dx.doi.org/10.1016/J.Jpsychires.2010.09.016
http://www.ncbi.nlm.nih.gov/pubmed/20965515
http://dx.doi.org/10.1016/J.Eurpsy.2008.01.1221
http://www.ncbi.nlm.nih.gov/pubmed/15997020


disorder: A surface-based morphometry study. Journal of psychiatric research. 2012; 46(9):1161–8.
Epub 2012/07/10. doi: 10.1016/j.jpsychires.2012.06.003 PMID: 22770508.

79. Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L, et al. Disorganization of anatomical
connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a
subpopulation of patients. Neurobioly Dis. 2010; 37(2):468–76. Epub 2009/11/17. doi: 10.1016/j.nbd.
2009.11.003 PMID: 19913616.

80. Menzies L, Achard S, Chamberlain SR, Fineberg N, Chen CH, Del Campo N, et al. Neurocognitive
endophenotypes of obsessive-compulsive disorder. Brain. 2007; 130:3223–36. doi: 10.1093/Brain/
Awm205 ISI:000251335200017. PMID: 17855376

81. Yoo SY, Jang JH, Shin YW, Kim DJ, Park HJ, MoonWJ, et al. White matter abnormalities in drug-naive
patients with obsessive-compulsive disorder: a Diffusion Tensor Study before and after citalopram
treatment. Acta Psychiat Scand. 2007; 116(3):211–9. doi: 10.1111/J.1600-0447.2007.01046.X
ISI:000248335800008. PMID: 17655563

82. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence
from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbito-
fronto-striatal model revisited. Neurosci Biobehav R. 2008; 32(3):525–49. doi: 10.1016/j.neubiorev.
2007.09.005 ISI:000253400600016. PMID: 18061263

83. Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005; 4(4):290–4.
Epub 2005/12/03. doi: 10.1080/14734220500348584 PMID: 16321885.

84. Strick PL, DumRP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009; 32:413–34.
Epub 2009/06/27. doi: 10.1146/annurev.neuro.31.060407.125606 PMID: 19555291.

85. Tobe RH, Bansal R, Xu D, Hao X, Liu J, Sanchez J, et al. Cerebellar morphology in Tourette syndrome
and obsessive-compulsive disorder. Ann Neurol. 2010; 67(4):479–87. Epub 2010/05/04. doi: 10.1002/
ana.21918 PMID: 20437583.

86. Ahmari SE, Spellman T, Douglass NL, Kheirbek MA, Simpson HB, Deisseroth K, et al. Repeated Cor-
tico-Striatal Stimulation Generates Persistent OCD-Like Behavior. Science. 2013; 340(6137):1234–9.
doi: 10.1126/Science.1234733WOS:000319972800051. PMID: 23744948

87. Burbaud P, Clair AH, Langbour N, Fernandez-Vidal S, Goillandeau M, Michelet T, et al. Neuronal activi-
ty correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive
disorder. Brain. 2013; 136(Pt 1):304–17. Epub 2013/02/01. doi: 10.1093/brain/aws306 PMID:
23365104.

88. Gilbert AR, Mataix-Cols D, Almeida JR, Lawrence N, Nutche J, Diwadkar V, et al. Brain structure and
symptom dimension relationships in obsessive-compulsive disorder: a voxel-based morphometry
study. Journal of affective disorders. 2008; 109(1–2):117–26. Epub 2008/03/18. doi: 10.1016/j.jad.
2007.12.223 PMID: 18342953.

89. Kasparek T, Marecek R, Schwarz D, Prikryl R, Vanicek J, Mikl M, et al. Source-basedmorphometry of
gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp. 2010; 31(2):300–10.
Epub 2009/09/25. doi: 10.1002/hbm.20865 PMID: 19777553.

90. Abramowitz JS, Deacon BJ. Psychometric properties and construct validity of the Obsessive-Compul-
sive Inventory—Revised: Replication and extension with a clinical sample. Journal of anxiety disorders.
2006; 20(8):1016–35. Epub 2006/04/20. doi: 10.1016/j.janxdis.2006.03.001 PMID: 16621437.

91. Mataix-Cols D, van den Heuvel OA. Common and distinct neural correlates of obsessive-compulsive
and related disorders. The Psychiatric clinics of North America. 2006; 29(2):391–410, viii. Epub 2006/
05/03. doi: 10.1016/j.psc.2006.02.006 PMID: 16650715.

Fusion Analysis of Gray andWhite Matter Networks in Patients with OCD

PLOSONE | DOI:10.1371/journal.pone.0127118 June 3, 2015 23 / 23

http://dx.doi.org/10.1016/j.jpsychires.2012.06.003
http://www.ncbi.nlm.nih.gov/pubmed/22770508
http://dx.doi.org/10.1016/j.nbd.2009.11.003
http://dx.doi.org/10.1016/j.nbd.2009.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19913616
http://dx.doi.org/10.1093/Brain/Awm205
http://dx.doi.org/10.1093/Brain/Awm205
http://www.ncbi.nlm.nih.gov/pubmed/17855376
http://dx.doi.org/10.1111/J.1600-0447.2007.01046.X
http://www.ncbi.nlm.nih.gov/pubmed/17655563
http://dx.doi.org/10.1016/j.neubiorev.2007.09.005
http://dx.doi.org/10.1016/j.neubiorev.2007.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18061263
http://dx.doi.org/10.1080/14734220500348584
http://www.ncbi.nlm.nih.gov/pubmed/16321885
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125606
http://www.ncbi.nlm.nih.gov/pubmed/19555291
http://dx.doi.org/10.1002/ana.21918
http://dx.doi.org/10.1002/ana.21918
http://www.ncbi.nlm.nih.gov/pubmed/20437583
http://dx.doi.org/10.1126/Science.1234733
http://www.ncbi.nlm.nih.gov/pubmed/23744948
http://dx.doi.org/10.1093/brain/aws306
http://www.ncbi.nlm.nih.gov/pubmed/23365104
http://dx.doi.org/10.1016/j.jad.2007.12.223
http://dx.doi.org/10.1016/j.jad.2007.12.223
http://www.ncbi.nlm.nih.gov/pubmed/18342953
http://dx.doi.org/10.1002/hbm.20865
http://www.ncbi.nlm.nih.gov/pubmed/19777553
http://dx.doi.org/10.1016/j.janxdis.2006.03.001
http://www.ncbi.nlm.nih.gov/pubmed/16621437
http://dx.doi.org/10.1016/j.psc.2006.02.006
http://www.ncbi.nlm.nih.gov/pubmed/16650715


Supporting Information 

Title: Alterations of gray and white matter networks in patients with obsessive-compulsive disorder: A 

multimodal fusion analysis of structural MRI and DTI using mCCA+jICA 

Authors: Seung-Goo Kim 1,2, Wi Hoon Jung 3, Sung Nyun Kim 4, Joon Hwan Jang 4 and Jun Soo Kwon 2,3,4 

1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; 2 Department of Brain and 

Cognitive Sciences, College of Natural Sciences, 3 Institute of Human Behavioral Medicine, SNU-MRC, 4 Department 

of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea. 

 

S1. Simulations for plausible underlying neurobiological structures 

In order to suggest plausible underlying structures of our current results using a multivariate fusion analysis 

in the main text, we simulated 2-D data with the dimensions of 50 x 50 for 30 subjects for two groups, 

respectively. The 2-D images were generated by multiplying mixing weights and two sources images. The 

sources have two Gaussian signals (full width at half maximum (FWHM) of 10 pixels) with the maximal 

value of 1 at each peak. The upper peaks overlapped with a distance from 0 to 20 pixels with a bin of two 

pixels, and the lower peaks were constantly distant across different source configurations (the lower left peak 

in the source #1, the lower right peak in the source #2 in Fig. S1A). The mixing weights for the first source 

were random variables from a normal distribution of !!N(0.8,0.05
2)  for the group #1 and !!N(0.5,0.05

2)  for the 

group #2. The mixing weight for the second source were random variables from !!N(0.35,0.07
2)  for both 

groups.  

After data generation with different degrees (distance between the peaks d=0, 2, 4, … , 20 pixels) of 

overlaps, the univariate and multivariate approaches were compared in terms of area under the curve (AUC) 

of receiver-operator curves (ROC) as follows: 



(1) T-statistic map for group difference is computed with 30 images for each group 

(2) Independent component analysis (ICA) finds two independent components (ICs) and the mixing 

weights are compared for group difference using two sample t-test 

(3) True positive rate (TPR) and false negative rate (FNR) are computed in detecting non-zero pixels 

in the first source (ground truth) using the absolute image of either Z-transformed T-statistic 

map (univariate) or IC map with group difference in mixing coefficients (multivariate) 

(4) Repeat (1)~(3) for 1000 times for each degree of overlap 

For the ICA, we used FastICA algorithm [1] that is implemented in an MATLAB package 

(http://research.ics.aalto.fi/ica/fastica/). The summary of the simulation is given in Fig. S1. Detailed results 

of the simulations can be found in Fig. S2. The multivariate method performed better than the univariate 

method over various different configurations of the sources in terms of AUC (Fig. S1B). While the AUC of 

the univariate method (Fig. S1B, cyan) was constantly around (mean AUC= 0.55 ± 0.0005), the AUC of the 

multivariate method (Fig. S1B, magenta) increases with the increasing overlap (d=20, AUC= 0.66 ± 0.02; 

d=0, AUC=0.71 ± 0.01), which is due to the summation of differential and common sources at the 

overlapping region making it easier to detect in the IC maps. 

As shown in Fig. S1C/D, the discrepancy between the multivariate and univariate method in terms of 

the magnitude of recovered sources is more pronounced especially when the differential source and the 

common source are overlapped to larger extent. On the other hand, the differences in spatial disposition are 

more exaggerated when the sources are distinct mainly due to the false positives (the regions at the upper 

right and lower right position) from the multivariate analysis. It suggests that the inclusion of false positives 

in the IC maps may be possible when the true source with differential weights between groups has no 



overlaps with the common sources, which would be, however, less likely for biological signals with high 

spatial dependency. 

Based on this simulation, we speculate that the partial overlaps between the our multivariate findings 

in the main text (see Results) and the univariate findings from a multi-site study [2], besides that the aims of 

the analyses are different, can be attributed to that the joint independent components showed significant 

group differences between patients with obsessive-compulsive disorder (OCD) and the healthy controls (i.e. 

GM #2 and FA #2 in the main text) are close to and partially overlapped with other common sources without 

the group differences (see Fig. 2 in the main text). The overlaps with the common components could render 

the ‘apparent difference’ non-significant even though the significantly different contributions latently exist. 
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