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As one of the most widely accepted neuroanatomical models on obsessive-compulsive
disorder (OCD), it has been hypothesized that imbalance between an excitatory direct
(ventral) pathway and an inhibitory indirect (dorsal) pathway in cortico-striato-thalamic
circuit underlies the emergence of OCD. Here we examine the structural network in
drug-free patients with OCD in terms of graph theoretical measures for the first time.
We used a measure called efficiency which quantifies how a node transfers information
efficiently. To construct brain networks, cortical thickness was automatically estimated
using T1-weighted magnetic resonance imaging. We found that the network of the OCD
patients was as efficient as that of healthy controls so that the both networks were in
the small-world regime. More importantly, however, disparity between the dorsal and the
ventral networks in the OCD patients was found in terms of graph theoretical measures,
suggesting a positive evidence to the imbalance theory on the underlying pathophysiology
of OCD.
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1. INTRODUCTION
Obsessive-compulsive disorder (OCD) is an anxiety disorder
characterized by intrusive, distressing thoughts and ritualistic,
repetitive behaviors (American Psychiatric Association, 1994).
The most widely accepted neuroanatomical model of OCD has
suggested the involvement of a direct and an indirect cortico-
striato-thalamic (CST) pathway (Cummings, 1993; Saxena et al.,
1998). In this model, the direct pathway involves in an excitatory
input to the internal part of globus pallidus that leads to a disinhi-
bition of thalamus and increased excitation of prefrontal cortex,
whereas the indirect pathway involves in an inhibitory input to
the external part of globus pallidus that evokes an increased inhi-
bition of thalamus and decreased excitation of prefrontal cortex
(Mataix-Cols and van den Heuvel, 2006). Although the over-
simplification of the model is questioned (Menzies et al., 2008;
Milad and Rauch, 2011), the dichroism has been a well-known
basis in approaching the disorder for a long time (Saxena et al.,
1998).

Functional studies driven by the CST model have converged on
altered activation in patients with OCD in relation to healthy con-
trols in basal ganglia, caudate nucleus, thalamus, orbital frontal
cortex, cingulate gyrus, dorsal lateral cortex and parietal regions,
using single-photon emission computed tomography (SPECT),
positron emission tomography (PET) or functional magnetic res-
onance imaging (fMRI) (Whiteside et al., 2004; Friedlander and

Desrocher, 2006). Despite of the inconsistencies in the literature
to some degree, many papers reported higher activations from
OCD patients in orbital frontal cortex and basal ganglia, in par-
ticular striatum, which have been related to the “hyperactivation
of ventral fronto-strital system”. In addition, lower activations
from OCD patients in dorsal lateral prefrontal cortex and anterior
cingulate gyrus, which have been known as the “hypoactivation
of dorsal fronto-strital system” (Saxena et al., 1998; Remijnse
et al., 2005; Oh et al., 2012; Mataix-Cols and van den Heuvel,
2006).

In relation to the functional findings supporting the CST
hypothesis, structural neuroimaging evidences of the abnormali-
ties in OCD patients have been cumulated. Structural alterations
were mainly localized in prefrontal regions and basal ganglia. In
meta-analyses, gray matter densities in bilateral anterior putam-
ina were found to be higher in OCD patients than healthy
controls, and those in dorsal prefrontal regions were found to
be lower in OCD patients (Radua and Mataix-Cols, 2009; Rotge
et al., 2010). In addition, diffusion tensor imaging (DTI) stud-
ies have shown that smaller fractional anisotropy (FA), which has
been commonly used to characterize local diffusion and thus to
infer white matter integrity (Basser, 1995), were found in clinical
population with OCD in the anterior part of cingulum, corpus
callosum and other white matter regions in frontal and parietal
lobes (Szeszko et al., 2005; Garibotto et al., 2009; Ha et al., 2009;
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Bora et al., 2011; Koch et al., 2012; Nakamae et al., 2011; Oh et al.,
2012).

It should be noted that the previous structural studies men-
tioned above have mainly focused on differences in local mor-
phology using massive univariate frameworks such as voxel-based
morphometry (VBM; Ashburner and Friston, 2000) or tract-
based spatial statistics (TBSS; Smith et al., 2006). Due to its
complex nature of brain network, local alterations might not
be sufficient to understand the disorder. As needs for investi-
gating connectivities within the CST circuits and between other
brain regions have been motivated in the previous literature on
OCD (Remijnse et al., 2005; Mataix-Cols and van den Heuvel,
2006; Menzies et al., 2008), a seed-based correlation method
(Harrison et al., 2009; Jang et al., 2010) and a whole-brain
graph analysis have been used in functional studies (Zhang et al.,
2011).

While it is demonstrated that network analyses are capable of
investigating the properties of human brains that could not be
described using the conventional analyses (Bullmore and Sporns,
2009), relatively new neuroimaging modalities such as DTI and
resting-fMRI have been mainly used for the brain connectivity
studies. In order to exploit conventional anatomical scans such as
T1-weighted MRI, a network analysis based on the correlation of
local morphology has been proposed as an alternative framework
to examine structural networks in human brains (Worsley et al.,
2004; Lerch and Evans, 2005; He et al., 2007; Bernhardt et al.,
2011).

In the studies, gray matter is characterized by cortical thick-
ness in a sub-millimeter resolution using cortical surface recon-
struction techniques (Dale et al., 1999; Fischl and Dale, 2000;
MacDonald et al., 2000). This approach, which only requires
T1-weighted MRI, assumes that the positive correlation of cor-
tical thickness may reflect the anatomical connectivity, pre-
sumably because of common experiences, shared trophic or
maturational influences (Lerch et al., 2008; He et al., 2009;
Raznahan et al., 2011). These networks constructed based on
cortical thickness have shown their resemblance to DTI-based
networks (Gong et al., 2012) and similar modular structures
with known functional modules (Chen et al., 2008, 2011).
More recently, the cortical thickness-based network in develop-
ing brains notably overlapped a functional network known as
default-mode-network (DMN; Raznahan et al., 2011).

Here we apply the cortical thickness network analysis on
patients with OCD. To our best knowledge, there has been no
preceding study to examine graph theoretical measures of brain
networks in patients with OCD based on the correlation of corti-
cal thickness so far. As the cortical thickness network analysis has
shown its ability to detect reliable and meaningful attributes of
human brains in healthy population (He et al., 2007; Chen et al.,
2008, 2011; Gong et al., 2009, 2012) and clinical populations with
disorders such as multiple sclerosis (He et al., 2009), Alzheimer’s
disease (He et al., 2008) or temporal lobe epilepsy (Bernhardt
et al., 2011), we expect to find alterations in the brain of patients
with OCD in terms of network properties, in particular, with a
supporting evidence for the dorsal-ventral imbalance in the CST
circuits (Saxena et al., 1998; Mataix-Cols and van den Heuvel,
2006), as well as abnormalities in other circuits including dorsal

anterior cingulate cortex (Milad and Rauch, 2011) and parietal
cortex (Menzies et al., 2008).

Our main contributions include: (1) performing a cortical
thickness network analysis on drug-free patients with OCD, (2)
investigating graph theoretical measures in the perspective of
the major hypothesis of OCD at a network-level (Latora and
Marchiori, 2001) and a node-level (Achard and Bullmore, 2007),
and finally (3) examining the pathophysiology of OCD in terms of
disparity between dorsal and ventral networks, as recently shown
as a spatial bias in FA alteration within corpus callosum in OCD
patients (Oh et al., 2012).

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
We recruited 32 patients who fulfilled the criteria for OCD in
DSM-IV (American Psychiatric Association, 1994) via the OCD
clinic at Seoul National University Hospital (Seoul, Korea). The
patients were diagnosed using the Structured Clinical Interview
for DSM-IV (SCID; First et al., 1996). All of the patients with
OCD were drug-free: 23 patients were drug-naïve, and the
other 9 patients were unmedicated for at least 4 weeks at the
time of inclusion. Four patients were assessed to have person-
ality disorders in addition to OCD: three were with obsessive-
compulsive personality disorders and one was with schizoty-
pal personality disorder. In addition to the patients, we also
recruited 35 age- and gender-matched controls (HC) using the
SCID Non-patient Version to confirm that none of the con-
trols was with Axis I psychiatric disorders. The exclusion criteria
for both patients and control included lifetime history of psy-
chosis, bipolar disorder, major depressive disorder, substance
abuse or dependence, significant head injury, seizure disor-
der or mental retardation. All participants were right-handed.
The severity of depression and anxiety was measured by self-
reporting Beck’s Depression Inventory (BDI; Beck et al., 1961)
and Beck’s Anxiety Inventory (BAI; Beck et al., 1988), respec-
tively. The severity of OC symptoms was assessed with clinician-
administered Yale-Brown Obsessive-Compulsive Scale (Y-BOCS;
Goodman et al., 1989). The institutional review board (IRB) of
Seoul National University Hospital (H-1209-025-424) approved
the present study. All participants were fully instructed about
the procedures of scanning and assessment and then submitted
written informed consents.

2.2. IMAGE ACQUISITION AND GRAPH CONSTRUCTION
We obtained magnetic resonance imaging (MRI) using 1.5T
MAGNETOM Avanto syngo scanner (Siemens, Erlangen,
Germany). T1-weighted 3D images were acquired with the
following parameters: TR = 1160 ms, TE = 4.76 ms, FOV =
230 mm, flip angle = 15◦, voxel size: 0.45 × 0.45 × 0.90 mm,
volume dimension: 350 × 263 × 350 mm.

The steps of image analysis are illustrated in Figure 1. To
compare brain networks between the patients and the controls
at the final stage of analysis, we estimated cortical thicknesses
from MRIs and constructed brain networks based on them. The
detailed steps of the present analysis are explained in the follow-
ings. The analysis was carried by custom MATLAB (Mathworks
Inc., Natick, MA, USA) codes, if not otherwise specified.
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FIGURE 1 | The illustration of analysis steps to construct networks from
MRI. The cortical thicknesses are estimated in native spaces (A, section 2.2.1),
normalized into the template space (B, section 2.2.2), and smoothed by a heat

kernel based on Laplace-Beltrami eigenfunctions (C, section 2.2.3). Partial
correlations are computed over 148 ROIs (D, section 2.2.4) and binarized to
obtain adjacency matrices at a certain rewiring cost (E, section 2.2.5).

2.2.1. Cortical thickness estimation
The reconstruction of cortical surfaces and the estimation of
cortical thickness were performed using FreeSurfer1. As in its stan-
dard pipeline (Dale et al., 1999), the intensity of T1-weighted
images were normalized and the bias of B0 field was corrected.
Then the images were resampled in a unit millimeter isovoxel.
An inner cortical surface (the interface between white matter and
gray matter) and an outer cortical surface (the interface between
gray matter and cerebrospinal fluid) were modeled as triangular
tessellation. The cortical thickness was computed by averaging
distances from the inner surface to outer surface and the dis-
tance from the outer surface to the inner surface (Fischl and Dale,
2000).

2.2.2. Spatial normalization and resampling on a template surface
The estimated cortical surfaces were spatially normalized onto a
given template surface, called “fsaverage6” with 40962 vertices for
each hemisphere, using curvature matching technique to align
major sulci patterns (Fischl et al., 1999). Then the cortical thick-
ness was resampled onto the template surface, resulting in the
correspondence of measures across all participants. This normal-
ization enables a direct comparison of a vertex or a set of vertices
across participants.

2.2.3. Heat kernel smoothing via Laplace-Beltrami eigenfunction
Individual cortical thickness maps on the template surface were
smoothed using a heat kernel smoothing technique based on

1http://surfer.nmr.mgh.harvard.edu

Laplace-Beltrami (LB) eigenfunctions (Seo et al., 2010; Kim
et al., 2011b; Seo and Chung, 2011). The surface-based smooth-
ing reduces the impact of possible abrupt noise or errors from
MRI scanning, surface reconstruction and thickness estimation,
thus increases statistical power (Chung et al., 2005; Lerch and
Evans, 2005). In addition, due to its analytic formulation, the
heat kernel smoothing via LB eigenfunctions has a benefit of
circumventing numerical errors in conventional smoothing tech-
niques based on iterations. Theoretical details are explained
in somewhere else (Seo et al., 2010). In this paper, we used
4000 orthonormal bases of LB eigenfunctions. The measure-
ments were smoothly recovered with the bandwidth parame-
ter σ of 10 mm, using freely available MATLAB codes by Moo
K. Chung2.

2.2.4. Partial correlation between ROIs
Automatic parcellations of gray matter into 74 regions-of-interest
(ROIs) per hemisphere were adapted from (Fischl et al., 2004;
Destrieux et al., 2010), which was included in FreeSurfer as
“Destrieux 2009 atlas”. Although the 148 ROIs are less uniform
in terms of area (mean area = 13.73 ± 9.68 cm2) than in a
high-resolution parcellation with about 1000 ROIs (mean area
∼1.5 cm2 with standard deviation less than 0.15 cm2) used in
Hagmann et al. (2007, 2008), the anatomical significance of the
current parcellations assists us in interpreting results while reduc-
ing the computational loads in permutation tests as described in

2http://brainimaging.waisman.wisc.edu/~chung/lb/
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the section 2.4. Thickness measures were averaged in each ROI
and used in further analysis.

We computed partial correlation between the ROIs while fac-
toring out the effect of age and gender, as well as the mean
of measures, as previous cortical thickness network studies (He
et al., 2007, 2008, 2009; Bernhardt et al., 2011). First we fit such a
general linear model (GLM) as

c(x) = β0 + β1a + β2g + ε, (1)

where c(x) is the vector of the cortical thickness of the x-th ROI
for individual participants, βk = 0, 1, 2 are unknown parameters
to estimate, a is the vector of ages, g is the vector of genders
and ϵ is the vector of Gaussian random noise. Once we esti-
mated the parameters with the least square method, the residuals
c(x) − ĉ(x) of the GLM were used to compute a correlation
matrix R = [

rxy
] ∈ R148×148 as

rxy = corr(c(x) − ĉ(x), c(y) − ĉ(y)), (2)

corr(i, j) is the Pearson product of two vectors i and j as

corr(i, j) =
∑

ij − [(∑
i
∑

j
)
/n

]
[

i2 − (∑
i
)2

/n
] [

j2 − (∑
j
)2

/n
] , (3)

where n is the number of the elements of i or j. Since we
are interested in the anatomical connectivity due to neuronal
associations under the same assumptions in the previous net-
work studies based on cortical thickness (He et al., 2007, 2009;
Bernhardt et al., 2011), we do not examine anti-correlations in
this paper. Although negative association should also be studied
in the future to reveal the biological mechanism of the cor-
tical thickness interdependence (Lerch et al., 2008; Raznahan
et al., 2011), it would be beyond the scope of the current
study.

2.2.5. Network construction for different rewiring costs
For it is known that the rewiring costs, or the density, of a
network critically affects the graph theoretical properties and
topological characteristics of network (Eguíluz et al., 2003; Latora
and Marchiori, 2003; Achard et al., 2006; Gong et al., 2009),
we controlled the costs to compare the brain networks of
the OCD patients with that of the controls. When an undi-
rected and unweighted graph G is written as a set of two
sets as

G = {V,E}, (4)

where V is the set of vertices and E is the set of edges, then the
cost of a graph G is given as

cost(G) = K

N(N − 1)/2
, (5)

where K = |E | as the number of edges and N = |V | as the num-
ber of vertices in the graph G. Note that N(N − 1)/2 is the largest

number of possible K. Thus the cost equals to zero when there
is no connections and the cost equals to one when every node
is directly connected to all the other nodes. We binarized the
correlation matrices so that they have the equivalent cost, rang-
ing from 0.01 to 0.50 with a step of 0.01. It resulted in 100 (50
costs × 2 groups) adjacency matrices Ag, c with the dimension-
ality of 148 × 148, where g is the group index (g = 1 for the
controls; g = 2 for the OCD patients) and c is the cost (c = 0.01,
0.02,. . . , 0.50). The denser graphs with the cost of more than 0.50
are indistinguishable between the groups and even from the the-
oretical models (random and lattice), thus we did not include the
range over 0.50 in our study. One might note that the selected
range of cost is slightly wider than in some previous studies:
0.05 ≤ c ≤ 0.40 (Bernhardt et al., 2011), 0.06 ≤ c ≤ 0.40 (He
et al., 2008), but narrower than in another study: 0 < c < 1 (He
et al., 2009). However, determining a threshold for binary graph
analysis is no trivial issue, and even selecting multiple thresholds
also introduces empirical choices (Langer et al., 2013). It should
be noted that using too high threshold (i.e., low cost) has a risk
of excluding true connections (false negative) and too low thresh-
old (i.e., high cost) has a risk of including false connections (false
positive).

2.3. GRAPH MEASURES: EFFICIENCY AT NETWORK AND NODE LEVELS
In order to characterize the properties of cortical thickness net-
works, we used efficiency in this paper, which measures how effi-
ciently a network exchanges information (Latora and Marchiori,
2001). The efficiency measure is given in two ways: (Latora and
Marchiori, 2001): global efficiency and local efficiency, which are
closely related to the small-worldness measures such as charac-
teristic path length and clustering coefficients (Watts and Strogatz,
1998). In contrast to the small-worldness measures are defined
only in a network with only one connected component, the effi-
ciency measures are more adoptable for the real-world networks
as they are also applicable to disconnected networks.

In addition to the originally proposed network-wise mea-
sures for efficiency (Latora and Marchiori, 2001), a node-wise
measure has been used in the previous brain connectivity liter-
ature (Achard and Bullmore, 2007; He et al., 2009; Wang et al.,
2009b; Lo et al., 2010), but only limited to the global efficiency.
Combining two levels (network- and node-) and two efficiency
measures (global and local), we used four different types of
efficiency measures in the paper, as explained in the following
subsections.

For the assessment of real-world networks from human brains,
we generated cost-matched theoretical networks. The theoreti-
cal networks provide benchmarks for a network with a maximal
global efficiency [i.e., a random network for unweighted graphs;
Latora and Marchiori (2003)] or a network with a high local effi-
ciency (i.e., a regular lattice) under a given constraint of cost.
A “economic behavior” of network, or small-worldness, is often
used to describe a network with a low characteristic path length,
or a high global efficiency, as a random network and a high clus-
tering coefficient, or a high local efficiency, as a regular lattice
(Latora and Marchiori, 2003). For each level of cost, 1000 ran-
dom networks with uniform probability of connections and 1000
lattice networks with the fixed patterns of adjacent connections
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were synthesized, then the graph measures were averaged over
instances. The efficiency measures in the followings were com-
puted using a custom modification of the MATLAB code in Brain
Connectivity Toolbox3.

2.3.1. Global efficiency
Global efficiency of a graph G is given (Latora and Marchiori,
2001) as

Eglob(G) = 1

(N − 1)N

∑

i ∈G

∑

j ∈G

1

dij
, (6)

where N is the number of nodes in the graph G, the nodes i and j
within G are different, (i ̸= j) and dij is the shortest path length, or
geodesic distance (Newman, 2003), between the two nodes. One
may note that Eglob(G) quantifies the expectation on how closely
a node is connected to all the other nodes in the whole network.
It has a clear relation to a graph theoretical measure previously
known as characteristic path length (Watts and Strogatz, 1998).
While the characteristic path length is the arithmetic mean of the
shortest path lengths, the Eglob is the reciprocal of the harmonic
mean of the shortest path lengths (Latora and Marchiori, 2003).
The Eglob is bounded from 0 to 1. When there are no connections
between any nodes, all geodesic distances are equal to infinity then
the Eglob equals to zero. On the other hand, when the all nodes are
directly connected, all distances are equal to one and the Eglob also
equals to one.

2.3.2. Local efficiency
Local efficiency of a network G is given as the average of the global
efficiencies of sub-graphs (Latora and Marchiori, 2001) as

Eloc(G) = 1
N

∑

i ∈G
Eglob(Gi) (7)

where Gi is a sub-graph centering the node i, that is, the set of the
node i and its neighbors (the nodes with the distance of a single
edge from the node i) and the set of edges between the nodes. As
the measure depicts connectivity within local neighbors, Latora
and Marchiori (2003) have shown that the Eloc(G) is related to
clustering coefficient (Watts and Strogatz, 1998). As the Eloc(G) is
the average of Eglob(Gi), the measure is also bounded from 0 to 1.
The higher the measure, the more efficiently the nodes within a
local network are interconnected.

2.3.3. Nodal efficiency
Besides of network-level, we can measure how efficiently an
individual node transfer information at node-level as

Enodal(i;G) = 1

N − 1

∑

j ∈G

1

dij
, (8)

where j ̸= i. Enodal(i;G) is known as nodal efficiency (Achard
and Bullmore, 2007). When the global efficiency Eglob(G) can

3https://sites.google.com/site/bctnet/

be understood as “the global efficiency of a network”, we can
regard the nodal efficiency Enodal(i;G) as “the global efficiency
of a node”. Remind that the term “global” or “local” only indi-
cates whether the efficiency measure is computed for the inter-
connections to the all nodes, i.e., global network, or whether it is
for the intra-connections within the neighboring nodes, i.e., local
network (Latora and Marchiori, 2003).

2.3.4. Neighboring efficiency
The efficiency within the local neighbors of a node is
computed as

Enbr(i;G) = Eglob(Gi) = 1

(Ni − 1)Ni

∑

m ∈Gi

∑

n ∈Gi

1

dmn
(9)

where Ni is the number of nodes in a sub-graph Gi and the
nodes m and n in Gi are different (m ̸= n). We call this measure
Enbr(i;G) as neighboring efficiency, which is a node-level measure
of local efficiency, as well as the nodal efficiency Enodal(i;G) is a
node-level measure of global efficiency. By definition, Enbr(i;G) is
given when Ni ≥ 2, otherwise Enbr(i;G) = 0 for a node with no
connections or only one connection.

2.4. STATISTICAL INFERENCES
We tested the equalities of the expected efficiency measures
between the controls and the OCD patients. The null hypotheses
of the equality of the expected network-level efficiencies (Eglob,
Eloc) between the networks of the controls (G1) and that of the
OCD patients (G2) are given as

{
Hglob

0 : E
(
Eglob(G2)

)
− E

(
Eglob(G1)

)
= 0

Hloc
0 : E

(
Eloc(G2)

)
− E

(
Eloc(G1)

)
= 0.

(10)

For the node-level measures (Enodal, Enbr), the null hypotheses of
equality at a node i are given as

{
Hnodal

0 (i) : E
(
Enodal(i;G2)

)
− E

(
Enodal(i;G1)

)
= 0

Hnbr
0 (i) : E

(
Enbr(i;G2)

)
− E

(
Enbr(i;G1)

)
= 0.

(11)

We used randomization to compute the exact p-values for the
significances of differences (Nichols and Holmes, 2001) in the
global, local, nodal and neighboring efficiency as given in sec-
tion 2.3. The group identifiers (g = 1, 2) were randomly per-
muted for 2000 times and the identical analysis steps were
applied to construct graphs and derive efficiency measures. The
difference between the two randomly separated groups were
used to obtain the null distribution under the hypothesis H0
that there is no difference between the controls and the OCD
patients. The p-values were calculated at each cost as two-tailed
p-values.

The significance level is given as 0.05 in this study. We did
not apply any multiple comparison corrections in comparing
the efficiency measures for each ROI as in the previous brain
connectivity studies (Achard and Bullmore, 2007; Wang et al.,
2009a), neither for each cost since the networks with the adja-
cent costs are obviously not independent. The similar relation-
ship between the networks across the costs has been explained
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by graph filtration (Lee et al., 2011), the process in which the
succeeding network embeds the preceding network with the
decreasing threshold of correlation (or the increasing “epsilon”
distance in constructing Rips complexes (Ghrist, 2007) in an
N-dimensional similarity space). We pursued, however, a per-
sistent group difference over the various costs as well in this
study.

3. RESULTS
3.1. DEMOGRAPHIC AND CLINICAL VARIABLES OF PARTICIPANTS
Demographic and clinical variables are tabulated with corre-
sponding statistics and p-values in Table 1. There were no sig-
nificant differences in age (p = 0.49), gender ratio (p = 0.88),
education year (p = 0.59) and IQ (p = 0.49). BDI and BAI scores
in the OCD patients were significantly higher than the controls
(BDI, p < 10−7; BAI, p < 10−6). The mean of total Y-BOCS
in the OCD patients was 21.03 with the standard deviation
of 6.06.

Out of 32 OCD patients, 13 patients (41%) were with con-
tamination, 8 patients (25%) with checking, 5 patients (16%)
with aggressions and 5 patients (16%) with other obsessions of
sex, religion, somatic, or a combination of them as their promi-
nent symptoms, as classified with Y-BOCS Symptom Checklist
(Goodman et al., 1989). The main symptom of one patient
was not determined. No significant differences between the
two largest subgroups (contamination vs. checking) were found
in total Y-BOCS (p = 0.31), neither in obsession (p = 0.10)
nor compulsion (p = 0.98) subscores. The equalities across
the other subgroups were not tested due to the small sizes
of the subgroups. In addition, we did not find the effect of
the history of medications on the severity of OCD either;
between 23 drug-naïve patients and 8 unmedicated patients,
there were no significant differences in total Y-BOCS (p = 0.25)
and the subscores of obsession (p = 0.90) and compulsion
(p = 0.58).

Table 1 | The summary of demographic and clinical variables.

Variable Controls OCD patients t-/z-stat. p-value
(n = 35) (n = 32)

Age (year) 23.94 ± 3.60 24.81 ± 6.41 0.69 0.49
Gender
(men/women)

24/11 21/11 0.15 0.88

Education (year) 14.03 ± 1.29 14.34 ± 3.23 0.53 0.59
IQ 113.20 ± 9.98 111.40 ± 11.32 −0.69 0.49
BDI 4.26 ± 6.17 17.37 ± 10.71 6.21 <10−7

BAI 4.54 ± 5.49 18.72 ± 13.70 5.65 <10−6

Y-BOCS
Obsession – 11.97 ± 3.49 – –
Compulsion – 9.06 ± 4.69 – –
Total – 21.03 ± 6.06 – –

The mean and the standard deviation of the variables are shown except for gen-
der. The IQ was estimated by Korean-Wechsler adult intelligence scale-revised
(K-WAIS-R). Abbreviations: BDI, Beck’s depression inventory; BAI, Beck’s anxiety
inventory; Y-BOCS, Yale-Brown obsessive-compulsive disorder Scale.

3.2. NO GROUP DIFFERENCES IN CORTICAL THICKNESS AND
CORRELATION COEFFICIENTS

In prior to graph measure analysis, we compared cortical thick-
ness covayring age and gender with multiple comparison cor-
rection by SurfStat MATLAB toolbox 4 (Worsley et al., 2009).
We found no significant group differences (Figure not shown;
corrected p > 0.56 in left hemisphere and p > 0.16 in right hemi-
sphere). In addition, inter-regional correlations rxy as given in
(Equation 2) were compared between groups using Fisher’s z-
transformation. Due to the substantially large number (148 ×
147/2 for all possible pairs) of simultaneous testings, false-
discovery-rate (FDR; Benjamini and Hochberg, 1995) is used for
this case. Once again, no correlation between the pairs of nodes
were found to be significantly different between the patients with
OCD and the controls (q > 0.40).

3.3. SMALL-WORLDNESS OF THE BRAIN NETWORKS
The global efficiencies and local efficiencies of the brain networks,
as well as the random and lattice networks with the matched
costs, are given over the varying costs (0.01, 0.02, · · · , 0.50) in
Figure 2. We found that the network-level efficiency measures of
the brain networks were invariently in-between the cost-matched
random and lattice networks as

Eglob(Grnd) > Eglob(Gbrain) > Eglob(Glat) and

Eloc(Glat) > Eloc(Gbrain) > Eloc(Grnd), (12)

except for two extreme cases (cost of 0.01 and 0.50).
These characteristics of inequalities have been typically

referred as economic small-world behaviors of networks (Latora
and Marchiori, 2003; Achard and Bullmore, 2007). It has been
found that many brain networks of clinical populations are still in
the small-world regime despite the significantly altered properties
of patients in comparison with the healthy populations (He et al.,
2007, 2008, 2009; Wang et al., 2009b; Lo et al., 2010). Thus we
presume that the cortical thickness network of the OCD patients
has the small-world architecture, as well as that of the controls.

3.4. NO GROUP DIFFERENCES IN NETWORK-LEVEL EFFICIENCY
We found significantly smaller global efficiencies in the OCD
patients than the controls at the cost of 0.06 (p = 0.03), 0.48
(p = 0.04) and 0.49 (p = 0.02), but found no differences at the
other costs. No significant group differences in local efficiency
were found at any costs we studied. In addition, the area under
curves (AUC) divided by the range of costs, or the mean of effi-
ciencies across the discrete costs, were compared. We found no
differences in the mean global efficiency (p = 0.14) nor the mean
local efficiency (p = 0.74). Taken together, we did not find a clear
distinction between the OCD patients and the controls in terms
of the aggregated network-level efficiency measures.

3.5. GROUP DIFFERENCES IN NODE-LEVEL EFFICIENCY
In contrast to the results of network-level efficiency, we found
significant group differences at node-level. The heat maps of

4http://www.math.mcgill.ca/keith/surfstat/
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FIGURE 2 | Global efficiencies and local efficiencies of the brain
networks of the controls (HC), and the OCD patients (OCD) are plotted
over variant rewiring costs with the ones of random and lattice
networks with matched costs (A,B). The differences between the OCD

patients and controls are plotted with the 95% confidence intervals (CI) of
the null distributions obtained from 2000 permutations (C,D). The
significantly different points (P < 0.05) are marked with green circles (C).
Note that no significant differences were found in the local efficiencies.

group-wise nodal efficiency and neighboring efficiency over costs
are given in Figures 3, 4, respectively. Additionally, the differences
in efficiency measures between the groups and the negative log-
arithm with the base of ten of p-values are also shown together.
The logarithmic p-value is signed as positive when the efficiency
is greater in the OCD patients than in the controls (− log10 p > 0)
and as negative when the value is smaller in the patients than in
the controls (log10 p < 0).

What can be prominently noted from Figure 3 is that the
number of disconnected nodes (the nodes with infinity dis-
tance to all other nodes thus zero nodal efficiency; blue pixels
in Figures 3A,B) at a low cost are larger in the OCD patients
than in the controls (e.g., when c = 0.01, 74 in OCD, 61 in
HC), and that it takes higher costs to be connected to any
nodes in the OCD patients (c = 0.20) than in NC (c = 0.15).
Unlike the small-wordness measure (Watts and Strogatz, 1998),
which is given for a connected network, the efficiency mea-
sure (Latora and Marchiori, 2003) enables the investigation

of the disconnected graphs with smaller costs in the present
study.

As we have done previously for the network-level efficiency
measures, the AUC divided by the range of costs were compared
for each node, so that we can compare mean measures across
costs. Out of the 148 ROIs, 9 nodes showed significant group dif-
ferences in nodal efficiencies, while 15 nodes were found to be
significantly different in neighboring efficiencies (p < 0.05), as
summarized in Table 2. For frontal regions, left orbital frontal
gyrus and right lateral orbital sulcus showed lower neighbor-
ing efficiencies in the OCD patients than the controls, while
left middle frontal sulcus exhibited smaller nodal efficiency as
well. On the other hand, parietal regions such as left postcen-
tral gyrus, right postcentral sulcus, left superior parietal gyrus,
and bilateral sulci intermedius primus of Jensen showed higher
efficiency measures in the OCD patients. Finally, medial occipito-
temporal gyri around parahippocampal gyri bilaterally showed
smaller nodal and neighboring efficiencies in the patients with
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FIGURE 3 | Nodal efficiencies for 148 ROIs are plotted over cost for the
controls (HC, A) and the OCD patients (OCD, B). Along the Y-axis, 74 ROI
labels are indicated for each set of two rows separated by dashed horizontal
lines (upper row for the left hemisphere; lower row for the right hemisphere).
See Destrieux et al. (2010) for abbreviation of the ROI labels. The group

differences as HC subtracted from OCD are shown (C). The warm color
shows higher nodal efficiency in OCD than in HC, and the cool color shows
the opposite. The signed logarithmic p-values for the significance of group
differences are also given (D). The positive values means higher nodal
efficiency in OCD than in HC (− log10 p > 0), and vice versa (log10 p < 0).

OCD, with smaller nodal efficiency in right lateral and medial
occipito-temporal gyri.

3.5.1. Spatial pattern of node-level efficiency differences
Interestingly, the spatial bias of the node-level differences in effi-
ciency measures was found at a large scale (i.e., dorsal vs. ventral).
For the sake of simplicity, the nodes are classified either as a dor-
sal or ventral node, based on the Z-coordinate of the center of

mass of a ROI, in relation to the median of Z-coordinates of the
all ROIs. Mind that this separation based on the Z-coordinate is
only for the purpose of a simple comparison of the spatial distri-
bution. Further investigation on community structures based on
thickness correlation also might be useful to analyze the distribu-
tion of local alterations, but we did not include such an analysis
in the present study to keep our focus here to the efficiency of
networks. The geometrical distribution of the efficiency measures
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FIGURE 4 | Neighboring efficiencies for 148 ROIs are plotted over cost
for the controls (HC, A) and the OCD patients (OCD, B). The group
differences as HC subtracted from OCD (C) and the signed logarithmic

p-values (D) are also shown. The same graphical scheme is the same as
Figure 3. The warm color means higher neighboring efficiency in OCD than in
HC and the cold color means the opposite (C,D).

and the corresponding binary networks in the template space are
visualized in Figures 5, 6, for nodal efficiency and neighboring
efficiency, respectively. As previously hinted at by Table 2, it can
be noticed that the efficiency measures of many dorsal nodes are
greater in the OCD patients than the controls, and the ones of
many ventral nodes are smaller from Figures 5, 6. The signed
p-values of 148 ROIs are summarized while the location (dorsal
or ventral) of nodes with significant group differences marked in
Figure 7. For the nodal efficiency Enodal (Figure 7A), all of the 4
nodes with significantly larger values in the OCD patients (nodes

above the upper red line) were dorsal without any ventral nodes
(100%; green), and all of the 5 nodes with significantly smaller
values (nodes under the lower red line) were ventral (100%;
magenta). For the neighboring efficiency Enbr (Figure 7B), 6 out
of 8 nodes with significantly greater values in the OCD patients
were dorsal (75%), and all of the 7 nodes with significantly smaller
values were ventral (100%).

Although the spatial bias in the present results seems clearly
discernible (100%; 100%; 75%; 100%), one may be interested in
the stability of the present finding. It can be possible to compute
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Table 2 | The summary of the nodes with significant differences in mean efficiency (p < 0.05) as the subtraction of controls (HC) from the OCD
patients (OCD-HC) with corresponding p-values for nodal efficiency (A) and neighboring efficiency (B).

Location Structure name OCD-HC p-value

A. Nodal efficiency (Enodal)
Dorsal nodes Paracentral loblue and sulcus 0.1699 0.023

Left middle frontal sulcus 0.2002 0.037
Right postcentral sulcus 0.1316 0.034
Right middle occipital gyrus 0.0944 0.041

Ventral nodes Left parahippocampal part of the medial occipito-temporal gyrus −0.2836 0.015
Right parahippocampal part of the medial occipito-temporal gyrus −0.3653 0.001
Right gyrus rectus −0.2620 0.049
Right lateral occipito-temporal gyrus −0.2427 0.034
Right medial occipito-temporal sulcus and lingual sulcus −0.2690 0.026

B. Neighboring efficiency (Enbr)
Dorsal nodes Left postcentral gyrus 0.1208 0.019

Left superior parietal gyrus 0.0989 0.033
Left sulcus intermedius primus of Jensen 0.3367 0.014
Left superior part of the precentral sulcus 0.1552 0.027
Right sulcus intermedius primus of Jensen 0.1787 0.030
Right intraparietal sulcus and transverse-parietal sulcus 0.1349 0.024

Ventral nodes Left H-shaped orbital sulcus −0.4093 0.004
Left orbital gyrus −0.1367 0.032
Left parahippocampal part of the medial occipito-temporal gyrus −0.4367 0.015
Left inferior temporal gyrus 0.0722 0.047
Left medial occipito-temporal sulcus and lingual sulcus −0.4374 0.035
Right parahippocampal part of the medial occipito-temporal gyrus −0.5707 0.003
Right lateral orbital sulcus 0.3416 0.028
Right lateral occipito-temporal gyrus −0.3742 0.002
Right horizontal ramus of the anterior segment of the lateral fissure −0.5793 0.011

Dorsal nodes and ventral nodes are separated for tabulation.

reliability using a resampling method known as jack-knifing.
Unfortunately, however, we used randomization to compute p-
values for group differences. To see the spatial pattern of the
nodes with significantly different efficiency in a resampled sub-
set, each subset requires a new run of randomization and graph
measure computation. It renders impractical computational load
with the current MATLAB codes. Thus we have not carried
out the analysis for this study. We discuss on the spatial bias
of node-level efficiency measures between the dorsal and ven-
tral networks from the perspective of the imbalance theory of
dorsal-ventral pathways in the OCD patients in the following
section.

3.5.2. Altered relationship between node-level efficiency and node
centrality

In addition to the spatial pattern, the relationship between the
efficiency and centrality are further examined. We used degree,
which is the number of connected edges to a node, as a sim-
ple measure for node centrality. The mean efficiencies are plotted
over degrees in Figure 8. The efficiency is fitted using a GLM as

E(i) = β0 + β1D(i) + β2G(i) + β3D(i)G(i) + ε (13)

where E(i) is an efficiency measure of the i-th node, D(i) is
a degree and G(i) is a group index. The efficiencies were well
explained by the full models (nodal efficiency, R2 = 0.98; neigh-
boring efficiency, R2 = 0.50). We used logarithm of degrees
when the model fit is improved as in case of neighboring effi-
ciency (R2 for the full model with a linear degree measure
is 0.39).

The interactions between group index and degree were found
to be significant for nodal efficiency (p < 0.005) and neighboring
efficiency (p < 0.0005). The nodes with significantly difference
efficiencies seem to be responsible for the interaction, especially
for that the nodes with lower efficiency are deviated from the fit-
ting lines. The p-values for the interactions without the nodes
with significantly smaller efficiencies were higher than signifi-
cance level in the study (nodal efficiency, p = 0.23; neighboring
efficiency, p = 0.24). Thus the nodes with significantly smaller
efficiencies in patients with OCD seem to be aberrant from the
other nodes in the OCD patients. As an illustration for this idea,
the degrees and efficiencies of the nodes with the smaller effi-
ciencies from OCD patients are plotted over cost in Figure 9.
For comparison, the measures of the other nodes with similar
degrees from the patients are also given. In the process of graph
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FIGURE 5 | Mean nodal efficiencies across costs are overlaid on the
cortical surfaces of the controls (HC, column A) and the OCD
patients (OCD, column C) from a dorsal view (upper row) and a
ventral view (lower row). See the color bar on the leftmost side for
the color coding from 0 to 0.8. The sub-graphs (Gi ) of the binary

networks at the cost of 0.10 are shown as well for HC (column B)
and OCD (column D). From the nodes that showed significantly
different nodal efficiencies (marked by thick circles), their first
neighbors are connected in distinct colors which correspond to the
ROI legend on the rightmost side.

growth with the increasing cost, the efficiencies of the nodes
without significant group differences (gray lines) increase earlier
than the nodes with significant group differences (cyan lines).
Thus the nodes with group differences have smaller mean effi-
ciency (AUC divided by the range of cost) than the other nodes
with similar mean degrees, deviating from the fitting lines in
Figure 8.

4. DISCUSSION
4.1. THE BRAIN NETWORK OF OCD PATIENTS IN THE SMALL-WORLD

REGIME
We found that the brain network of the OCD patients is within
the small-world regime as well as that of the controls. The
small-worldness of neuronal network has been demonstrated
in various scales: the neuronal system of C. elegans (Watts
and Strogatz, 1998), the brains of cats and macaque monkeys
(Hilgetag and Kaiser, 2004; Kaiser, 2007), and that of humans
(Sporns et al., 2004; Sporns and Honey, 2006; Achard and
Bullmore, 2007; Hagmann et al., 2007; He et al., 2007; Hagmann
et al., 2008). Although the network properties were found to
be altered to a significant degree, the brain networks of clinical
population also exhibited small-worldness distinctively from the
cost-matched theoretical networks (He et al., 2008, 2009; Wang
et al., 2009a; Bernhardt et al., 2011). In consistence with a pre-
vious functional network study on the OCD patients (Zhang
et al., 2011), we confirmed that the structural network of the

patients shows small-worldness as well in terms of inequality
of network-level efficiency measures (Equation 12) as shown in
Figure 2.

The small-worldness of a network implies the existence of
local clusters in relation to its equivalent random counterpart
(Kaiser, 2011). As it can be seen in Figures 1E, 10, the corti-
cal thickness networks from both of the OCD patients and the
controls remarkably showed the variant degrees of connections
across nodes. Regarding that the random and lattice networks
are generated to have uniform distributions of degrees, the vari-
ety of degrees of the real-world brain networks makes them
clearly distinguishable from the theoretical networks. In particu-
lar, the pattern of mean degrees showed noteworthy resemblance
between the brain networks of the OCD patients and the con-
trol as given in Figure 10. The correlation of mean degrees
between the groups was strongly positive (r = 0.4969, p < 10−9).
It may imply that the essential structures and functions of brain
network are still preserved in the OCD patients, as shown as
intact capabilities of basic behaviors and primitive function-
ing of the patients, though diverse impairment in high level
cognitive functioning (Graybiel and Rauch, 2000; Kuelz et al.,
2004).

4.2. DORSAL AND VENTRAL DISPARITY IN OCD PATIENTS
The most significant contribution of our present study is detect-
ing the disparity between the dorsal and the ventral networks in
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FIGURE 6 | Mean neighboring efficiencies across costs for the controls
(HC, column A) and the patients with OCD (OCD, column C) and the
sub-graphs (Gi ) of the corresponding binary networks at the cost of 0.1

(HC, column B; OCD, column D) are shown in the same graphical
scheme as Figure 5, except that the color coding range of neighboring
efficiencies is adjusted from 0.3 to 0.8 for a better visualization.

the OCD patients in terms of graph theoretical measures, sup-
porting the hypothesis on “the imbalance of tone” between direct
and indirect CST pathways (Saxena et al., 1998, 2001).

Although we could not find any group differences in the mean
network-level efficiency measures, we found significant alter-
ations of the node-level efficiency in the OCD patients that were
localized with an evident spatial bias as shown in Figures 5, 6,
which may reflect the imbalance between the dorsal and ventral
pathways in the patients. In particular, the topological alterations
were particularly localized in sensory-motor regions including
paracentral lobule, postcentral regions, parietal cortices and mid-
dle frontal cortex as greater nodal or neighboring efficiencies in
the OCD patients than the controls, and the aberrations were
also detected in the ventral frontal and temporal regions includ-
ing orbital cortices the parahippocampal cortices as smaller nodal
or neighboring efficiencies in the OCD patients. We have shown
that the ratios of nodes with significantly greater or smaller effi-
ciency are not equal between the dorsal and ventral nodes, which
may reflect the spatial disparity of the subnetworks in the patients
with OCD, as shown in Figure 7.

Our findings are in accordance with the previous VBM stud-
ies those found local alterations of gray matter in parietal cortex
(Kim et al., 2001; Valente et al., 2005), middle temporal and occip-
ital cortex (Togao et al., 2010) and orbital frontal cortex (Pujol
et al., 2004; Szeszko et al., 2008). Given the neuropathological
model (Saxena et al., 2001; Menzies et al., 2008), those regions
have been considered as the loci of the abnormalities of OC symp-
toms such as attention control deficit, excessive anxiety and failure

of impulse control (Friedlander and Desrocher, 2006; Menzies
et al., 2008).

More interestingly, the present findings seem to be closely
related to a multivariate study on the structural network of OCD
patients (Menzies et al., 2007), which used a statistical technique
called partial least square (PLS; McIntosh et al., 1996). Unlike the
massive univariate approaches such as VBM, PLS extracts spatial
patterns that optimally correlate with a given measure of inter-
est from the whole image. Thus the ability of PLS to detect a
component with covariance is quite similar to that of the corti-
cal thickness network analysis we used in this paper, in the sense
of multivariate approaches. Their study showed that higher gray
matter density in a “parieto-cingulo-striatal system” and lower
gray matter density in a “fronto-temporal system” were correlated
with increasing behavioral impairment in OCD patients (Menzies
et al., 2007), with a striking congruence with the current findings.

4.3. ABERRANT RELATIONSHIP BETWEEN EFFICIENCY AND
CENTRALITY IN OCD PATIENTS

We also found that significant interactions between degree cen-
trality and group on node-level efficiency. The interactions
seemed to be driven by the nodes that showed significant group
differences, which are deviated even from the other nodes within
the patients. In particular, the nodes with smaller efficiency in
OCD patients demonstrated different graph growth trajectory
with the increasing costs, compared to the other nodes in OCD
patients with similar mean degrees. The nodal efficiency of a node
can increase without the additional connections to the node but
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FIGURE 7 | The mean node-level efficiency measures were
compared. Signed logarithmic p-values for nodal efficiency (A) and
for neighboring efficiency (B) are given. The x-axis indicates the
index of the ROI, or the node, from the left hemisphere (LH) to
the right hemisphere (RH), which are separated by dashed vertical
lines. Along the y-axis, the positive values mean the higher

efficiency measures in OCD patients than in controls (− log10 p > 0),
and the negative values mean lower efficiency measures in OCD
patients (log10 p < 0). The significance level of α = 0.05 are marked
with red horizontal lines and the suprathreshold nodes are
highlighted by green circles (dorsal nodes) or magenta squares
(ventral nodes). See Table 2 for ROI labels.

FIGURE 8 | Mean nodal efficiency (A) and neighboring efficiency (B) are
shown over mean degrees in a linear (A) and a logarithmic (B) scale.
Each point indicate an ROI from the networks of the healthy controls (HC,
blue dots) and patients with OCD (OCD, red dots). Specific ROIs with
significant group differences in efficiency measures are marked with

either green triangles (E(i; GOCD) > E(i; GHC)) or cyan triangles
(E(i; GOCD) < E(i; GHC)). Regression lines are given for each group (HC, blue
line; OCD, red line). Above panels, F -statistic and p-value for a GLM testing
the interaction between logarithm of degree and group and R2 for the full
model are given.

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 302 | 13

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kim et al. Disparity between networks in OCD

FIGURE 9 | Degree (upper row) and efficiency (lower row) are plotted
over cost for the nodes with smaller nodal efficiency (A, cyan) and
smaller neighboring efficiency (B, cyan) from OCD patients. For
comparison, the measures of the other nodes from the patients with

similar mean degrees are also shown (gray). The nodes with smaller
efficiency in OCD than healthy controls exhibits different growth of
efficiency even though the mean degrees are similar to the other nodes
in OCD.

FIGURE 10 | The averaged degrees across costs over 148 ROIs are shown for the controls (HC) and OCD patients (OCD) on the y-axis. Similarly to
Figure 7, the x-axis indicates the index of the ROI from the left hemisphere (LH) to the right hemisphere (RH), which are separated by dashed vertical lines.

by the additional connections to the other node that is already
connected to the node. In other words, a node that is connected
to a hub node can have high nodal efficiency even with only 1◦.
In case of OCD patients in the present study, the nodes without
group differences (Figure 9A, gray lines) showed abrupt increase
of nodal efficiency at a low cost (<0.05) without much increase
of degrees. On the other hand, the nodes with group differences
(Figure 9A, cyan lines) took high costs to have sudden increase of
nodal efficiency, which is likely to be the point when the node is
connected to the other node with high degrees.

Neighboring efficiency does not monotonously increase by
increasing cost, since the measure quantifies the connections
between the first neighbors of the node. Thus the neighboring
efficiency can suddenly decrease during the graph growth when a

new node without any connections to the pre-existing first neigh-
bors is connected. In our case of OCD patients, the nodes without
group differences (Figure 9B, gray lines) showed sudden increases
at low degrees and sudden decrease, while the nodes with group
differences (Figure 9B, cyan lines) evolved with slowly increasing
neighboring efficiency, which means connecting unrelated nodes
into its the first neighborhood.

Only 3 nodes out of 24 nodes with group difference in effi-
ciency found to be with significantly different degree between
groups (p < 0.05). It is presumably because that the nodes with
significant group differences showed different trajectory of evo-
lution. Thus the difference in node level efficiency could not be
explained solely by degree centrality but also the connectivity of
other nodes as well. As an alternative measure for centrality in
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a close relation with efficiency, information centrality has been
introduced (Latora and Marchiori, 2004), but further investi-
gation in terms of graph theories remains to pursuit in this
paper.

4.4. CORTICAL THICKNESS NETWORK AND THE PATTERN OF
FUNCTIONAL ACTIVATIONS IN OCD PATIENTS

The disruption of structural architecture may correlate with
the alteration of the functional activation of involved areas.
Specifically, the cortical thickness network has demonstrated its
spatial correspondence to the DMN in human brains (Raznahan
et al., 2011), and the altered relationship between the subcortico-
cortical structures in a mouse model of Huntington’s disease, in
which its subcortical functions were impaired by a gene-knockout
(Lerch et al., 2008). Here, the altered efficiency measures at a node
level in the cortical thickness network of OCD patients implicate
the different pattern of one-to-n similarity of local morphology
of a node (nodal efficiency), or the different pattern of n-to-n
similarity within the neighbors of the node (neighboring effi-
ciency) in relation to the network of the controls. Although we
do not have concurrent functional dataset of the participants, an
fMRI meta-analysis using activation likelihood estimation (ALE;
Turkeltaub et al., 2002) demonstrated that a greater activation
was found in the left inferior parietal cortex in OCD patients
than controls and a smaller activation in the left parahippocam-
pal gyrus was found during various tasks (Menzies et al., 2008)
in relation to our current findings. However, it would be fair to
note that the meta-analysis also reported the foci of abnormal
activations that are not clearly relevant to our results, as well as
other studies that showed the different patterns of activation in
OCD patients, during tasks (Nakao et al., 2005; Han et al., 2011)
and using PET at rest (Kwon et al., 2003). Thus the relationship
between the patterns of functional activation and the efficiencies
of cortical thickness network may not be simply straightforward
but manifold due to the complex nature of human brains.

A recent whole-brain analysis on the functional connectivity of
OCD patients showed significantly higher or lower inter-regional
correlations of activations at rest (Zhang et al., 2011). The spa-
tial patterns of aberrant functional connectivity in their findings
were not quantified, but it can be noted that higher correla-
tions were found between parietal nodes, cingulate nodes and
dorsal frontal nodes and lower correlations were found between
prefrontal nodes and posterior temporal nodes (Zhang et al.,
2011). Although a larger number of samples and simultane-
ous multi-modal data will be beneficial to clarify the interaction
between the structural and functional networks, we conjecture
that the topological alteration in the structural network in OCD
patients would exhibit concurrent deviant patterns of functional
activations.

It can be added to discussion, that the resting-state hyperactiv-
ity in the ventral networks in OCD patients has been consistently
found in terms of greater local activation (Kwon et al., 2003;
Friedlander and Desrocher, 2006) and higher cortico-strial func-
tional connectivity of the basal ganglia (Harrison et al., 2009).
Intriguingly, it was demonstrated that the ventral network, pri-
marily including orbital frontal cortex, showed smaller deactiva-
tion (i.e., the failure of inhibition), responding to the participant’s

own error, thus resulting in higher activation in OCD patients
compared to controls (Stern et al., 2011). The coarse connections
and lower efficiency in the ventral network of the OCD patients in
our present findings implies that the morphometric similarity of
the ventral nodes with other nodes is disturbed. It may reflect the
underlying pathology of the dysfunction of inhibitory controls in
the OCD patients.

4.5. LIMITATIONS AND FUTURE WORKS
The first methodological limitation of our study is that the cur-
rent practice of cortical thickness network analysis is restricted to
cortical structures. Although the subcortical structures were con-
sidered to be highly involved in the pathophysiology of mental
disorders including OCD (Cummings, 1993; Saxena et al., 2001),
the present technical issues such as MR imaging resolution and
tissue contrast still render the surface analysis problematic to the
other brain structures than neocortices, despite recent computa-
tional advances (Khan et al., 2008; Qiu et al., 2010). Alternatively,
the volumetric measure of a subcortical structure may be used
along with the cortical thickness (Lerch et al., 2008). In addition,
it can also be possible to characterize the covariance structure of
local morphology in volumetric space (Kim et al., 2011a; Tijms
et al., 2012). It may be useful to adapt and combine those meth-
ods to investigate the relationship within and between the cortical
and subcortical networks.

The second limitation is that we could not separate the OCD
patients by their main symptoms, mainly due to the small size of
subgroups. As there have been rich discussions and supporting
evidences for the heterogeneity of OCD symptoms (Mataix-Cols
and van den Heuvel, 2006; van den Heuvel et al., 2009; Koch et al.,
2012), possible subtypes and multi-dimensions of the disorder
were discussed in the context of refining the diagnosis criteria
in the next generation of DSM (Leckman et al., 2010; Mataix-
Cols et al., 2010; Taylor, 2011). Even though we did not carry
out the analyses on the subgroups of the OCD patients in this
paper, a methodological improvement of the diagnosis and a
larger number of samples may resort the inconsistency in the
previous findings due to the diversity of OCD.

In relation to heterogeneity, we did not find any group dif-
ferences in cortical thickness in the current sample. Although
we previously reported cortical thinning in other patients with
unmedicated OCD (Shin et al., 2007), it was demonstrated that
a severity of OCD subtype may be correlated with the cortical
thickness (Nakamae et al., 2012). The underlying mechanism of
OCD might not be directly reflected in the local morphometry,
but rather be manifested in the interaction of complex networks,
which motivated the series of graph analysis on human brain
including the current study as well.

In conclusion, we have examined the network properties in
the patients with OCD based on the cortical thickness for the
first time. The anatomical network in the OCD patients was
in the small-world regime as well as that of the healthy con-
trols. We found topological alterations in the patients in terms
of efficiency at node level and its relation to node centrality.
The alteration showed disparity between the dorsal and ventral
networks, which may contribute to confirm the dorsal-ventral
imbalance hypothesis (Saxena et al., 2001).

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 302 | 15

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kim et al. Disparity between networks in OCD

ACKNOWLEDGMENTS
The authors would like to thank Dr. Moo K. Chung for method-
ological consulting. The portion of this work was presented at
the 18th Annual Meeting of the Organization for Human Brain

Mapping, Beijing, China, June, 2012. This work was supported by
the National Research Foundation of Korea grant (2012-0005150)
funded by the Ministry of Education, Science and Technology
(MEST) of the Republic of Korea.

REFERENCES
Achard, S., and Bullmore, E. (2007).

Efficiency and cost of economical
brain functional networks. PloS.
Comput. Biol. 3, 174–183. doi:
10.1371/journal.pcbi.0030017

Achard, S., Salvador, R., Whitcher,
B., Suckling, J., and Bullmore,
E. (2006). A resilient, low-
frequency, small-world human
brain functional network with
highly connected association cor-
tical hubs. J. Neurosci. 26, 63. doi:
10.1523/JNEUROSCI.3874-05.2006

American Psychiatric Association
(1994). Diagnostic and Statistical
Manual of Mental Disorders: DSM-
IV. Washington, DC: American
Psychiatric Association

Ashburner, J., and Friston, K. (2000).
Voxel-based morphometry – the
methods. Neuroimage 11, 805–821.
doi: 10.1006/nimg.2000.0582

Basser, P. J. (1995). Inferring
microstructural features and
the physiological state of tissues
from diffusion-weighted images.
NMR Biomed. 8, 333–344. doi:
10.1002/nbm.1940080707

Beck, A., Epstein, N., Brown, G., and
Steer, R. (1988). An inventory
for measuring clinical anxiety: psy-
chometric properties. J. Consult.
Clin. Psychol. 56, 893–897. doi:
10.1037/0022-006X.56.6.893

Beck, A., Ward, C., Mendelson,
M., Mock, J., and Erabaugh, J.
(1961). An inventory for measuring
depression. Arch. Gen. Psychiat.
4, 561–571. doi: 10.1001/arch-
psyc.1961.01710120031004

Benjamini, Y., and Hochberg, Y.
(1995). Controlling the false
discovery rate: a practical and
powerful approach to multiple
testing. J. Roy. Stat. Soc. B Met. 57,
289–300.

Bernhardt, B., Chen, Z., He, Y., Evans,
A., and Bernasconi, N. (2011).
Graph-theoretical analysis reveals
disrupted small-world organization
of cortical thickness correlation net-
works in temporal lobe epilepsy.
Cereb Cortex. 21, 2147–2157. doi:
10.1093/cercor/bhq291

Bora, E., Harrison, B. J., Fornito, A.,
Cocchi, L., Pujol, J., Fontenelle,
L. F., et al. (2011). White mat-
ter microstructure in patients with
obsessive-compulsive disorder. J.
Psychiatry Neurosci. 36, 42–46. doi:
10.1503/jpn.100082

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph
theoretical analysis of structural
and functional systems. Nat.
Rev. Neurosci. 10, 186–198. doi:
10.1038/nrn2575

Chen, Z. J., He, Y., Rosa-Neto, P.,
Germann, J., and Evans, A. C.
(2008). Revealing modular archi-
tecture of human brain structural
networks by using cortical thick-
ness from MRI. Cereb Cortex.
18, 2374–2381. doi: 10.1093/cer-
cor/bhn003

Chen, Z. J., He, Y., Rosa-Neto, P.,
Gong, G., and Evans, A. C. (2011).
Age-related alterations in the
modular organization of struc-
tural cortical network by using
cortical thickness from MRI.
Neuroimage 56, 235–245. doi:
10.1016/j.neuroimage.2011.01.010

Chung, M. K., Robbins, S., Dalton,
K. M., Davidson, R. J., Alexander,
A. L., and Evans, A. C. (2005).
Cortical thickness analysis in
autism with heat kernel smoothing.
Neuroimage 25, 1256–1265. doi:
10.1016/j.neuroimage.2004.12.052

Cummings, J. (1993). Frontal-
subcortical circuits and human
behavior. Arch. Neurol. 50,
873–880. doi: 10.1001/arch-
neur.1993.00540080076020

Dale, A. M., Fischl, B., and Sereno,
M. I. (1999). Cortical surface-
based analysis – I. Segmentation
and surface reconstruction.
Neuroimage 9, 179–194. doi:
10.1006/nimg.1998.0395

Destrieux, C., Fischl, B., Dale,
A., and Halgren, E. (2010).
Automatic parcellation of human
cortical gyri and sulci using
standard anatomical nomencla-
ture. Neuroimage 53, 1–15. doi:
10.1016/j.neuroimage.2010.06.010

Eguíluz, V., Chialvo, D., Cecchi, G.,
Baliki, M., and Apkarian, V. (2003).
Scale-free brain functional net-
works. Phys. Rev. Lett. 94:e4. doi:
10.1103/PhysRevLett.94.018102

First, M., Spitzer, R., Gibbon, M., and
Williams, J. (1996). Structured
Clinical Interview for DSM-IV
Axis I Disorder. New York,
NY: New York State Psychiatric
Institute.

Fischl, B., and Dale, A. (2000).
Measuring the thickness of the
human cerebral cortex from mag-
netic resonance images. Proc. Natl.

Acad. Sci. U.S.A. 97, 11050–11055.
doi: 10.1073/pnas.200033797

Fischl, B., Sereno, M., Tootell, R., and
Dale, A. (1999). High-resolution
intersubject averaging and a coordi-
nate system for the cortical surface.
Hum. Brain Mapp. 8, 272–284. doi:
10.1002/(SICI)1097-0193(1999)8:4
<272::AID-HBM10>3.0.CO;2-4

Fischl, B., van der Kouwe, A., Destrieux,
C., Halgren, E., Ségonne, F., Salat,
D., et al. (2004). Automatically
parcellating the human cerebral cor-
tex. Cereb Cortex. 14, 11. doi:
10.1093/cercor/bhg087

Friedlander, L., and Desrocher, M.
(2006). Neuroimaging studies
of obsessive-compulsive disorder
in adults and children. Clin.
Psychol. Rev. 26, 32–49. doi:
10.1016/j.cpr.2005.06.010

Garibotto, V., Scifo, P., Gorini, A.,
Alonso, C., Brambati, S., Bellodi,
L., et al. (2009). Disorganization
of anatomical connectivity in
obsessive compulsive disorder:
a multi-parameter diffusion
tensor imaging study in a
subpopulation of patients.
Neurobiol. Dis. 37, 468–476.
doi: 10.1016/j.nbd.2009.11.003

Ghrist, R. (2007). Barcodes: the per-
sistent topology of data. Bull.
Am. Math. Soc. 45, 61–76. doi:
10.1090/S0273-0979-07-01191-3

Gong, G., He, Y., Chen, Z. J., and
Evans, A. C. (2012). Convergence
and divergence of thickness corre-
lations with diffusion connections
across the human cerebral cor-
tex. Neuroimage 59, 1239–1248. doi:
10.1016/j.neuroimage.2011.08.017

Gong, G., Rosa-Neto, P., Carbonell,
F., Chen, Z., He, Y., and Evans,
A. (2009). Age- and gender-
related differences in the
cortical anatomical network. J.
Neurosci. 29, 15684–15693. doi:
10.1523/JNEUROSCI.2308-09.2009

Goodman, W., Price, L., Rasmussen,
S., Mazure, C., Fleischmann, R.,
Hill, C., et al. (1989). The
Yale-Brown obsessive compulsive
scale: I. Development, use, and
reliability. Arch. Gen. Psychiat.
46, 1006–1011. doi: 10.1001/arch-
psyc.1989.01810110048007

Graybiel, A., and Rauch, S. (2000).
Toward a neurobiology of
obsessive-compulsive disor-
der. Neuron 28, 343–347. doi:
10.1016/S0896-6273(00)00113-6

Ha, T. H., Kang, D.-H., Park, J. S.,
Jang, J. H., Jung, W. H., Choi,
J.-S., et al. (2009). White mat-
ter alterations in male patients
with obsessive-compulsive disor-
der. Neuroreport 20, 735–739. doi:
10.1097/WNR.0b013e32832ad3da

Hagmann, P., Cammoun, L., Gigandet,
X., Meuli, R., Christopher J. H.,
van Wedeen, J., et al. (2008).
Mapping the structural core
of human cerebral cortex.
PloS Biol. 6, 1479–1493. doi:
10.1371/journal.pbio.0060159

Hagmann, P., Kurant, M., Gigandet, X.,
Thiran, P., Wedeen, V., Meuli,
R., et al. (2007). Mapping
human whole-brain struc-
tural networks with diffusion
MRI. PLoS ONE 2:e597. doi:
10.1371/journal.pone.0000597

Han, J. Y., Kang, D.-H., Gu, B.-M.,
Jung, W. H., Choi, J.-S., Choi,
C.-H., et al. (2011). Altered
brain activation in ventral frontal-
striatal regions following a 16-week
pharmacotherapy in unmedicated
obsessive-compulsive disorder. J.
Korean Med. Sci. 26, 665–674. doi:
10.3346/jkms.2011.26.5.665

Harrison, B., Soriano-Mas, C., Pujol,
J., Ortiz, H., López-Solà, M.,
Hernández-Ribas, R., et al.
(2009). Altered corticostri-
atal functional connectivity in
obsessive-compulsive disorder.
Arch. Gen. Psychiat. 66, 1189–1200.
doi: 10.1001/archgenpsychia-
try.2009.152

He, Y., Chen, Z., and Evans, A. (2007).
Small-world anatomical networks
in the human brain revealed by cor-
tical thickness from MRI. Cereb
Cortex. 17, 2407. doi: 10.1093/cer-
cor/bhl149

He, Y., Chen, Z., and Evans, A. (2008).
Structural insights into aberrant
topological patterns of large-scale
cortical networks in Alzheimer’s
disease. J. Neurosci. 28:4756.
doi: 10.1523/JNEUROSCI.0141-
08.2008

He, Y., Dagher, A., Chen, Z., Charil,
A., Zijdenbos, A., Worsley, K., et al.
(2009). Impaired small-world effi-
ciency in structural cortical net-
works in multiple sclerosis asso-
ciated with white matter lesion
load. Brain 132, 3366–3379. doi:
10.1093/brain/awp089

Hilgetag, C., and Kaiser, M. (2004).
Clustered organization of cortical

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 302 | 16

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kim et al. Disparity between networks in OCD

connectivity. Neuroinformatics 2,
353–360. doi: 10.1385/NI:2:3:353

Jang, J., Kim, J.-H., Jung, W., Choi,
J.-S., Jung, M., Lee, J.-M., et al.
(2010). Functional connectivity
in fronto-subcortical circuitry
during the resting state in
obsessive-compulsive disorder.
Neurosci. Lett. 474, 158–162. doi:
10.1016/j.neulet.2010.03.031

Kaiser, M. (2007). Brain architec-
ture: a design for natural computa-
tion. Philos. Trans. R. Soc. A. 365,
3033–3045.

Kaiser, M. (2011). A tutorial in con-
nectome analysis: topological and
spatial features of brain networks.
Neuroimage 57, 892–907. doi:
10.1016/j.neuroimage.2011.05.025

Khan, A., Wang, L., and Beg, M.
(2008). FreeSurfer-initiated
fully-automated subcortical brain
segmentation in MRI using large
deformation diffeomorphic metric
mapping. Neuroimage 41, 735–746.
doi: 10.1016/j.neuroimage.2008.
03.024

Kim, J.-J., Lee, M. C., Kim, J., Kim,
I. Y., Kim, S. I., Han, M. H., et al.
(2001). Grey matter abnormali-
ties in obsessive-compulsive disor-
der. Br. J. Psychiatry 179, 330–334.
doi: 10.1192/bjp.179.4.330

Kim, S.-G., Chung, M. K., Hanson, J.,
Avants, B. B., Gee, J. C., Davidson,
R. J., et al. (2011a). “Structural con-
nectivity via the tensor-based mor-
phometry,” in IEEE International
Symposium on Biomedical Imaging,
(Chicago, IL), 808–811.

Kim, S.-G., Chung, M. K., Seo, S. H.,
Schaefer, S. M., van Reekum, C., and
Davidson, R. J. (2011b). “Heat ker-
nel smoothing via Laplace-Beltrami
eigenfunctions and its application
to subcortical structure modeling,”
in Pacific-Rim Symposium on Image
and Video Technology, volume 7087
of Lecture Notes in Computer
Science, ed Y.-S. Ho (Gwangju,
South Korea: Springer), 36–57.

Koch, K., Wagner, G., Schachtzabel, C.,
Schultz, C. C., Straube, T., Gullmar,
D., et al. (2012). White matter
structure and symptom dimensions
in obsessive-compulsive disorder. J.
Psychiatry Res. 46, 264–270. doi:
10.1016/j.jpsychires.2011.10.016

Kuelz, A. K., Hohagen, F., and
Voderholzer, U. (2004).
Neuropsychological perfor-
mance in obsessive-compulsive
disorder: a critical review.
Biol. Psychol. 65, 185–236. doi:
10.1016/j.biopsycho.2003.07.007

Kwon, J. S., Kim, J.-J., Lee, D. W.,
Lee, J. S., Lee, D. S., Kim, M.-
S., et al. (2003). Neural cor-
relates of clinical symptoms and

cognitive dysfunctions in obsessive–
compulsive disorder. Psychiatry
Res. 122, 37–47. doi: 10.1016/S0925-
4927(02)00104-X

Langer, N., Pedroni, A., and Jäncke, L.
(2013). The problem of thresh-
olding in small-world network anal-
ysis. PLoS One 8:e53199. doi:
10.1371/journal.pone.0053199

Latora, V., and Marchiori, M. (2001).
Efficient behavior of small-world
networks. Phys. Rev. Lett. 87,
198701.

Latora, V., and Marchiori, M. (2003).
Economic small-world behav-
ior in weighted networks. Eur.
Phys. J. B 32, 249–263. doi:
10.1140/epjb/e2003-00095-5

Latora, V., and Marchiori, M. (2004).
A measure of centrality based on
the network efficiency. New J. Phys.
9, 1–11. doi: 10.1088/1367-2630/9/
6/188

Leckman, J., Denys, D., Simpson, H.,
Mataix-Cols, D., Hollander, E.,
Saxena, S., et al. (2010). Obsessive–
compulsive disorder: a review of
the diagnostic criteria and possible
subtypes and dimensional specifiers
for DSM-V. Depress. Anxiety 27,
507–527. doi: 10.1002/da.20669

Lee, H., Chung, M. K., Kang, H.,
Kim, B.-N., and Lee, D. S. (2011).
Computing the shape of brain net-
works using graph filtration and
Gromov-Hausdorff metric. Med.
Image Comput. Comput. Assist. Inter.
14(Pt 2), 302–309.

Lerch, J., Carroll, J., Dorr, A., Spring,
S., Evans, A., Hayden, M., et al.
(2008). Cortical thickness mea-
sured from MRI in the YAC128
mouse model of Huntington’s dis-
ease. Neuroimage 41, 243–251. doi:
10.1016/j.neuroimage.2008.02.019

Lerch, J. P., and Evans, A. (2005).
Cortical thickness analysis exam-
ined through power analysis
and a population simulation.
Neuroimage 24, 163–173. doi:
10.1016/j.neuroimage.2004.07.045

Lo, C.-Y., Wang, P.-N., Chou, K.-H.,
Wang, J., He, Y., and Lin, C.-P.
(2010). Diffusion tensor tractog-
raphy reveals abnormal topologi-
cal organization in structural corti-
cal networks in Alzheimer’s disease.
J. Neurosci. 30, 16876–16885. doi:
10.1523/JNEUROSCI.4136-10.2010

MacDonald, D., Kabani, N., Avis, D.,
and Evans, A. (2000). Automated
3-D extraction of inner and outer
surfaces of cerebral cortex from
MRI. Neuroimage 12, 340–356. doi:
10.1006/nimg.1999.0534

Mataix-Cols, D., Frost, R., Pertusa, A.,
Clark, L. A., Saxena, S., Leckman,
J., et al. (2010). Hoarding disor-
der: a new diagnosis for DSM-V?

Depress. Anxiety 27, 556–572. doi:
10.1002/da.20693

Mataix-Cols, D., and van den Heuvel,
O. (2006). Common and distinct
neural correlates of obsessive-
compulsive and related disorders.
Psychiatr. Clin. N. Am. 29, 391–410,
viii. doi: 10.1016/j.psc.2006.02.006

McIntosh, A., Bookstein, F., Haxby,
J., and Grady, C. (1996). Spatial
pattern analysis of functional brain
images using partial least squares.
Neuroimage 3(3 Pt 1), 143–157. doi:
10.1006/nimg.1996.0016

Menzies, L., Achard, S., Chamberlain,
S., Fineberg, N., Chen, C.-H.,
del Campo, N., et al. (2007).
Neurocognitive endophenotypes
of obsessive-compulsive disor-
der. Brain 130, 3223–3236. doi:
10.1093/brain/awm205

Menzies, L., Chamberlain, S., Laird,
A., Thelen, S., Sahakian, B., and
Bullmore, E. (2008). Integrating
evidence from neuroimaging
and neuropsychological studies
of obsessive-compulsive disor-
der: The orbitofronto-striatal
model revisited. Neurosci.
Biobehav. R 32, 525–549. doi:
10.1016/j.neubiorev.2007.09.005

Milad, M., and Rauch, S. (2011).
Obsessive-compulsive disorder:
beyond segregated cortico-
striatal pathways. Trends
Cogn. Sci. 16, 43–51. doi:
10.1016/j.tics.2011.11.003

Nakamae, T., Jin, N., Sakai, Y., Nishida,
S., Yamada, K., Nishimura, T., et al.
(2011). Diffusion tensor imaging
and tract-based spatial statistics
in obsessive-compulsive disorder.
J. Psychiatry Res. 45, 687–690.
doi: 10.1016/j.jpsychires.2010.
09.016

Nakamae, T., Narumoto, J., Sakai, Y.,
Nishida, S., Yamada, K., Kubota,
M., et al. (2012). Reduced cortical
thickness in non-medicated patients
with obsessive-compulsive disor-
der. Prog. Neuropsychopharmacol.
Biol. Psychiatry. 37, 90–95. doi:
10.1016/j.pnpbp.2012.01.001

Nakao, T., Nakagawa, A., Yoshiura,
T., Nakatani, E., Nabeyama,
M., Yoshizato, C., et al. (2005).
Brain activation of patients with
obsessive-compulsive disorder
during neuropsychological and
symptom provocation tasks before
and after symptom improve-
ment: a functional magnetic
resonance imaging study. Biol.
Psychiatry 57, 901–910. doi:
10.1016/j.biopsych.2004.12.039

Newman, M. E. J. (2003). The struc-
ture and function of complex net-
works. SIAM Rev. 45, 167–256. doi:
10.1137/S003614450342480

Nichols, T., and Holmes, A. (2001).
Nonparametric permutation tests
for functional neuroimaging: a
primer with examples. Hum.
Brain Mapp. 15, 1–25. doi:
10.1002/hbm.1058

Oh, J. S., Jang, J. H., Jung, W. H.,
Kang, D. H., Choi, J. S., Choi,
C. H., et al. (2012). Reduced
fronto-callosal fiber integrity in
unmedicated OCD patients: a dif-
fusion tractography study. Hum.
Brain Mapp. 33, 2441–2452. doi:
10.1002/hbm.21372

Pujol, J., Soriano-Mas, C., Alonso,
P., Cardoner, N., Menchón, J. M.,
Deus, J., et al. (2004). Mapping
structural brain alterations in
obsessive-compulsive disorder.
Arch. Gen. Psychiatry 61, 720–730.
doi: 10.1001/archpsyc.61.7.720

Qiu, A., Brown, T., Fischl, B., Ma, J.,
and Miller, M. (2010). Atlas genera-
tion for subcortical and ventricular
structures with its applications in
shape analysis. IEEE Trans. Image
Process. 19, 1539–1547.

Radua, J., and Mataix-Cols, D. (2009).
Voxel-wise meta-analysis of grey
matter changes in obsessive-
compulsive disorder. Br. J.
Psychiatry 195, 393–402. doi:
10.1192/bjp.bp.108.055046

Raznahan, A., Lerch, J. P., Lee, N.,
Greenstein, D., Wallace, G. L.,
Stockman, M., et al. (2011).
Patterns of coordinated anatom-
ical change in human cortical
development: a longitudinal neu-
roimaging study of maturational
coupling. Neuron 72, 873–884. doi:
10.1016/j.neuron.2011.09.028

Remijnse, P. L., van den Heuvel,
O. A., and Veltman, D. J. (2005).
Neuroimaging in obsessive-
compulsive disorder. Curr.
Med. Imag. Rev. 1, 331–351.
doi: 10.2174/157340505774574808

Rotge, J. Y., Langbour, N., Guehl,
D., Bioulac, B., Jaafari, N., Allard,
M., et al. (2010). Gray matter
alterations in obsessive-compulsive
disorder: an anatomic likeli-
hood estimation meta-analysis.
Neuropsychopharmacol 35, 686–691.
doi: 10.1038/npp.2009.175

Saxena, S., Bota, R., and Brody,
A. (2001). Brain-behavior
relationships in obsessive-
compulsive disorder. Semin.
Clin. Neuropsychiatry 6, 82–101.
doi: 10.1053/scnp.2001.21833

Saxena, S., Brody, A., Schwartz, J., and
Baxter, L. (1998). Neuroimaging
and frontal-subcortical circuitry in
obsessive-compulsive disorder. Br. J.
Psychiatry Suppl. 1998, 26–37.

Seo, S. H., and Chung, M. K. (2011).
“Laplace-Beltrami eigenfunction

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 302 | 17

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kim et al. Disparity between networks in OCD

expansion of cortical manifolds,” in
IEEE International Symposium on
Biomedical Imaging, (Chicago, IL),
372–375.

Seo, S. H., Chung, M. K., and
Vorperian, H. (2010). Heat
kernel smoothing using Laplace-
Beltrami eigenfunctions. Med.
Image Comput. Comput. Assist.
Inter. 13 (Pt 3), 505–512. doi:
10.1007/978-3-642-15711-0_63

Shin, Y. W., Yoo, S. Y., Lee, J. K., Ha,
T. H., Lee, K. J., Lee, J. M., et al.
(2007). Cortical thinning in obses-
sive compulsive disorder. Hum.
Brain Mapp. 28, 1128–1135. doi:
10.1002/hbm.20338

Smith, S., Jenkinson, M., Johansen-
Berg, H., Rueckert, D., Nichols,
T., mackay, C., et al. (2006).
Tract-based spatial statis-
tics: voxelwise analysis of
multi-subject diffusion data.
Neuroimage 31, 1487–1505. doi:
10.1016/j.neuroimage.2006.02.024

Sporns, O., Chialvo, D., Kaiser,
M., and Hilgetag, C. (2004).
Organization, development and
function of complex brain net-
works. Trends Cogn. Sci. 8, 418–425.
doi: 10.1016/j.tics.2004.07.008

Sporns, O., and Honey, C. (2006).
Small worlds inside big
brains. Proc. Natl. Acad. Sci.
U.S.A. 103, 19219–19220. doi:
10.1073/pnas.0609523103

Stern, E., Welsh, R., Fitzgerald, K.,
Gehring, W., Lister, J., Himle,
J., et al. (2011). Hyperactive
error responses and altered
connectivity in ventromedial
and frontoinsular cortices in
obsessive-compulsive disorder.
Biol. Psychiatry 69, 583–591.
doi: 10.1016/j.biopsych.2010.
09.048

Szeszko, P. R., Ardekani, B. A., Ashtari,
M., Malhotra, A. K., Robinson,
D. G., Bilder, R. M., et al. (2005).
White matter abnormalities in
obsessive-compulsive disorder: A
diffusion tensor imaging study.
Arch. Gen. Psychiatry 62, 782–790.
doi: 10.1001/archpsyc.62.7.782

Szeszko, P. R., Christian, C.,
MacMaster, F., Lencz, T., Mirza,
Y., Taormina, S. P., et al. (2008).
Gray matter structural alter-
ations in psychotropic drug-naive
pediatric obsessive-compulsive
disorder: an optimized voxel-
based morphometry study. Am.
J. Psychiatry 165, 1299–1307. doi:
10.1176/appi.ajp.2008.08010033

Taylor, S. (2011). Early versus late onset
obsessive–compulsive disorder: evi-
dence for distinct subtypes. Clin.
Psychol. Rev. 31, 1083–1100. doi:
10.1016/j.cpr.2011.06.007

Tijms, B. M., Seriès, P., Willshaw,
D. J., and Lawrie, S. M. (2012).
Similarity-based extraction of indi-
vidual networks from gray mat-
ter MRI scans. Cereb Cortex.
22, 1530–1541. doi: 10.1093/cer-
cor/bhr221

Togao, O., Yoshiura, T., Nakao,
T., Nabeyama, M., Sanematsu,
H., Nakagawa, A., et al. (2010).
Regional gray and white mat-
ter volume abnormalities in
obsessive–compulsive disorder: a
voxel-based morphometry study.
Psychiatry Res. 184, 29–37. doi:
10.1016/j.pscychresns.2010.06.011

Turkeltaub, P. E., Eden, G. F., Jones,
K. M., and Zeffiro, T. A. (2002).
Meta-analysis of the functional
neuroanatomy of single-word
reading: method and validation.
Neuroimage 16(3 Pt A), 765–780.
doi: 10.1006/nimg.2002.1131

Valente, A. A., Miguel, E. C., Castro,
C. C., Amaro, E., Duran, F. L.,
Buchpiguel, C. A., et al. (2005).
Regional gray matter abnormali-
ties in obsessive-compulsive disor-
der: a voxel-based morphometry
study. Biol. Psychol. 58, 479–487.
doi: 10.1016/j.biopsych.2005.04.021

van den Heuvel, O., Remijnse, P.,
Mataix-Cols, D., Vrenken, H.,
Groenewegen, H., Uylings,
H., et al. (2009). The major
symptom dimensions of obsessive-
compulsive disorder are mediated
by partially distinct neural sys-
tems. Brain 132, 853–868. doi:
10.1093/brain/awn267

Wang, J., Wang, L., Zang, Y., Yang,
H., Tang, H., Gong, Q., et al.
(2009a). Parcellation-dependent
small-world brain functional net-
works: a resting-state fmri study.
Hum. Brain Mapp. 30, 1511–1523.
doi: 10.1002/hbm.20623

Wang, L., Zhu, C., He, Y., Zang, Y.,
Cao, Q., Zhang, H., et al. (2009b).
Altered small-world brain func-
tional networks in children with
attention-deficit/hyperactivity dis-
order. Hum. Brain Mapp. 30,
638–649. doi: 10.1002/hbm.20530

Watts, D. J., and Strogatz, S. H.
(1998). Collective dynamics of
‘small-world’ networks. Nature 393,
440–442. doi: 10.1038/30918

Whiteside, S., Port, J., and Abramowitz,
J. (2004). A meta-analysis of
functional neuroimaging in
obsessive-compulsive disorder.
Psychiatry Res. 132, 69–79. doi:
10.1016/j.pscychresns.2004.07.001

Worsley, K., Taylor, J., Carbonell, F.,
Chung, M., Duerden, E., Bernhardt,
B., et al. (2009). Surfstat: a mat-
lab toolbox for the statistical anal-
ysis of univariate and multivariate

surface and volumetric data using
linear mixed effects models and
random field theory. Neuroimage
47, S102–S102. doi: 10.1016/S1053-
8119(09)70882-1

Worsley, K., Taylor, J., Tomaiuolo,
F., and Lerch, J. (2004). Unified
univariate and multivariate random
field theory. Neuroimage 23(Suppl.
1), S189–S195. doi: 10.1016/j.
neuroimage.2004.07.026

Zhang, T., Wang, J., Yang, Y., Wu,
Q., Li, B., Chen, L., et al. (2011).
Abnormal small-world architecture
of top-down control networks in
obsessive-compulsive disorder. J.
Psychiatr. Neurosci. 36, 23–31. doi:
10.1503/jpn.100006

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 27 January 2013; accepted: 06
June 2013; published online: 03 July
2013.
Citation: Kim S-G, Jung WH, Kim SN,
Jang JH and Kwon JS (2013) Disparity
between dorsal and ventral networks in
patients with obsessive-compulsive disor-
der: evidence revealed by graph theoret-
ical analysis based on cortical thickness
from MRI. Front. Hum. Neurosci. 7:302.
doi: 10.3389/fnhum.2013.00302
Copyright © 2013 Kim, Jung, Kim, Jang
and Kwon. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 302 | 18

http://dx.doi.org/10.3389/fnhum.2013.00302
http://dx.doi.org/10.3389/fnhum.2013.00302
http://dx.doi.org/10.3389/fnhum.2013.00302
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive

	Disparity between dorsal and ventral networks in patients with obsessive-compulsive disorder: evidence revealed by graph theoretical analysis based on cortical thickness from MRI
	Introduction
	Materials and Methods
	Participants
	Image Acquisition and Graph Construction
	Cortical thickness estimation
	Spatial normalization and resampling on a template surface
	Heat kernel smoothing via Laplace-Beltrami eigenfunction
	Partial correlation between ROIs
	Network construction for different rewiring costs

	Graph Measures: Efficiency at Network and Node Levels
	Global efficiency
	Local efficiency
	Nodal efficiency
	Neighboring efficiency

	Statistical Inferences

	Results
	Demographic and Clinical Variables of Participants
	No Group Differences in Cortical Thickness and Correlation Coefficients
	Small-Worldness of the Brain Networks
	No Group Differences in Network-Level Efficiency
	Group Differences in Node-Level Efficiency
	Spatial pattern of node-level efficiency differences
	Altered relationship between node-level efficiency and node centrality


	Discussion
	The Brain Network of OCD Patients in the Small-World Regime
	Dorsal and Ventral Disparity in OCD Patients
	Aberrant Relationship Between Efficiency and Centrality in OCD Patients
	Cortical Thickness Network and the Pattern of Functional Activations in OCD Patients
	Limitations and Future Works

	Acknowledgments
	References


