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Even without formal training, humans experience a wide range of emotions in response
to changes in musical features, such as tonality and rhythm, during music listening.
While many studies have investigated how isolated elements of tonal and rhythmic
properties are processed in the human brain, it remains unclear whether these findings
with such controlled stimuli are generalizable to complex stimuli in the real world. In
the current study, we present an analytical framework of a linearized encoding analysis
based on a set of music information retrieval features to investigate the rapid cortical
encoding of tonal and rhythmic hierarchies in natural music. We applied this framework
to a public domain EEG dataset (OpenMIIR) to deconvolve overlapping EEG responses
to various musical features in continuous music. In particular, the proposed framework
investigated the EEG encoding of the following features: tonal stability, key clarity,
beat, and meter. This analysis revealed a differential spatiotemporal neural encoding
of beat and meter, but not of tonal stability and key clarity. The results demonstrate
that this framework can uncover associations of ongoing brain activity with relevant
musical features, which could be further extended to other relevant measures such as
time-resolved emotional responses in future studies.

Keywords: linearized encoding analysis, electroencephalography, tonal hierarchy, rhythmic hierarchy, naturalistic
paradigm

INTRODUCTION

Music is a universal auditory experience known to evoke intense feelings. Even without musical
training, humans not only connect to it on an emotional level but can also generate expectations
as they listen to it (Koelsch et al., 2000). We gather clues from what we are listening to in
real-time combined with internalized musical patterns, or schema, from our respective cultural
settings to guess what will happen next, which ultimately results in a change in our emotions.
Schemata consist of musical features, such as tonality (i.e., pitches and their relationship to one
another) and rhythm. However, tonality has often been studied using heavily contrived chord
progressions instead of more natural, original music in order to impose rigorous controls on the
experiment (Fishman et al., 2001; Loui and Wessel, 2007; Koelsch and Jentschke, 2010). Likewise,
beat perception studies have favored simplistic, isolated rhythms over complex patterns found
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in everyday music (Snyder and Large, 2005; Fujioka et al., 2009).
Therefore, designs that take advantage of the multiple, complex
features of natural music stimuli are needed to confirm the results
of these experiments.

In order to devise a framework that can account for these
complexities, we first considered how different musical features
build up over the course of a piece of music. In everyday music,
tonality and rhythm are constructed hierarchically, meaning
some pitches in certain positions (e.g., in a bar) have more
importance than others (Krumhansl and Shepard, 1979). One
way that listeners assess this importance is via the temporal
positions of pitches. Tones that occur at rhythmically critical
moments in a piece allow us to more easily anticipate what
we should hear next and when (Krumhansl, 1990; Krumhansl
and Cuddy, 2010). This type of beat perception is considered
hierarchical in the sense that it involves multiple layers of
perception which interact with one another, namely beat and
meter. Beat refers to the onset of every beat in a given measure,
whereas meter refers to the importance of the beats relative to
a given time signature (e.g., 4/4). Music listening has repeatedly
been linked with activation of the motor cortex, in particular
relating to anticipation of the beat (Zatorre et al., 2007; Chen
et al., 2008; Gordon et al., 2018). The clarity of the beat
matters during music perception as well; during moments of
high beat saliency, functional connectivity increases from the
basal ganglia and thalamus to the auditory and sensorimotor
cortices and cerebellum, while low beat saliency correlates with
increased connectivity between the auditory and motor cortices,
indicating that we participate in an active search to find the
beat when it becomes less predictable (Toiviainen et al., 2020).
EEG studies, in particular, have shed light on how humans
entrain beat and meter on both a micro-scale (e.g., milliseconds)
(Snyder and Large, 2005; Fujioka et al., 2009) and macro-scale
(e.g., years of genre-specific musical training) (Bianco et al.,
2018). For example, it only requires a brief musical sequence
to observe beta band activity (14–30 Hz) that increases after
each tone, then decreases, creating beta oscillations synchronized
to the beat of the music (Fujioka et al., 2009). Gamma band
activity (∼30–60 Hz) also increases after each tone, even when
a tone that was supposed to occur is omitted, suggesting that
gamma oscillations represent an endogenous mechanism of beat
anticipation (Fujioka et al., 2009). It was further found that phase-
locked, evoked gamma band activity increases about 50 ms after
tone onset and diminishes when tones are omitted, showing
larger responses during accented beats vs. weak ones, which
suggests a neural correlate for meter (Snyder and Large, 2005).
Therefore, the aim of our study was to set up a continuous music
framework that is not only able to detect encoding of beat and
meter, but also able to distinguish between the two.

Tonality is another key component of real-life music listening.
We learn what notes or chords will come next in a piece of
music based, in part, on the statistical distribution, or frequency,
of tones or sequences of tones (Krumhansl and Shepard, 1979).
From these observations, Krumhansl and Cuddy (2010) derived
the concept of tonal hierarchy, which describes the relative
importance of tones in a musical context. By organizing tones
in this way, humans assemble a psychological representation of

the music based on tonality and rhythm. A few studies have
attempted to develop multivariate frameworks that account for
this prediction-driven, hierarchical nature of music. For example,
Di Liberto et al. (2020) used EEG paired with continuous
music stimuli to investigate the relative contributions of acoustic
vs. melodic features of music to the cortical encoding of
melodic expectation. However, they used monophonic melodies,
rather than harmonic, complex music that we would hear in
everyday life. They analyzed the EEG data with a useful tool
for continuous stimuli, the Multivariate Temporal Response
Function (mTRF) MATLAB toolbox, which maps stimulus
features to EEG responses by estimating linear transfer functions
(Crosse et al., 2016). Sturm et al. (2015) also used ridge regression
with temporal embedding to calculate correlations between brain
signal and music. Even though they used natural, complex piano
music, they chose the power slope of the audio signal as a
predictor, which is considered a basic acoustic measure that
underlies more complex features such as beat and meter.

Building on the groundwork of these previous multivariate
music analyses, we used the mTRF to analyze high-level tonal and
rhythmic features of natural, continuous music stimuli extracted
with the Music Information Retrieval (MIR) MATLAB toolbox
(Lartillot and Toiviainen, 2007). The proposed framework aims
to better understand how we process everyday music.

In an attempt to model Krumhansl’s hierarchical organization
of musical features, we also expanded on the features provided
in the MIR toolbox to further enhance ecological validity.
For example, key clarity, which measures how tonally similar
a given frame of music is to a given key signature, has
been used in several studies (Alluri et al., 2012; Sturm et al.,
2015; Burunat et al., 2016), yet may not provide an accurate
measurement of a musical event’s tonality within the context
of the entire musical excerpt. This motivated us to develop
a novel feature called tonal stability, which contextualizes a
particular musical event with respect to the tonal history thus
far. Tonal stability quantifies the tonal hierarchy of a piece
of music by taking the angular similarity between the key
strength of a certain frame and the averaged key strength up
until that frame. This allows us to determine how stable a
musical event (or a frame) is within a given tonal hierarchy.
In other words, it calculates how related the chord implied in
an individual frame is to the overarching key, which is derived
from a cumulative moving average. By continuously measuring
local changes in tonal key centers with respect to the whole
musical excerpt, we approximated the ongoing perception of
tonal stability. To our knowledge, no prior study has developed
such an analytical framework for combining MIR toolbox
features with the mTRF to investigate how tonal and rhythmic
features are encoded in the EEG signal during the listening
of natural music.

We applied our framework to a public domain EEG
dataset, the Open Music Imagery Information Retrieval dataset
(Stober, 2017), to test the differential cortical encoding of
tonal and rhythmic hierarchies. Using model comparisons,
we inferred the contribution of individual features in EEG
prediction. We show novel ecological evidence confirming and
expanding Krumhansl’s theory on how frequency and placement
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of musical features affect our perception and predictions
(Krumhansl and Cuddy, 2010).

MATERIALS AND METHODS

The approach we used in the current study is known as linearized
modeling of a sensory system (Wu et al., 2006), which has
been successfully applied to M/EEG data (Lalor et al., 2006; Di
Liberto et al., 2015; Brodbeck et al., 2018) as well as fMRI data
(Kay et al., 2008; Huth et al., 2016) in response to naturalistic
visual and auditory stimuli. The key idea of the approach is
a linearization function (Wu et al., 2006), which captures the
nonlinearity of stimulus-response mapping and provides an
efficient parameterization of relevant aspects of a stimulus that
can be linearly associated with its corresponding response. In
this section, we will explain our linearization functions (i.e.,
musical features), the specifications of the analyzed public data,
and practical details of the analysis, which was carried out using
MATLAB (RRID:SCR_001622; R2020a) unless otherwise noted.

Musical Features
We considered a variety of features for the construction of our
analytical models. The foundational feature in all models was
the temporal envelope of the auditory stimulus, which contains
low-level acoustic features such as amplitude variations. For
tonal hierarchy, we used key clarity and tonal stability as our
two additional features. For rhythmic hierarchy, we looked at
the onset of every beat and their relative strengths within the
given meter.

Acoustic Feature
A whole-spectrum envelope was calculated as the absolute value
of the Hilbert transform of the musical signal. The envelope was
down-sampled to the EEG’s sampling rate after anti-aliasing high-
pass filtering. This feature describing whole-spectrum acoustic
energy served as a baseline for other models adding tonal and
rhythmic features.

Tonal Features
As for high-level tonal features, we computed key clarity and tonal
stability. Key clarity was derived from the MIR toolbox1 (v1.7)
function mirkeystrength, which computes a 24-dimensional
vector of Pearson correlation coefficients corresponding to each
of the 24 possible keys (12 major and 12 minor), which is
called a key strength vector (Gómez, 2006). Key clarity is defined
by the maximal correlation coefficient, which measures how
strongly a certain key is implied in a given frame of interest
(Lartillot and Toiviainen, 2007).

Our novel tonal stability feature was designed to contextualize
the key strength with respect to the overall key strength of a given
musical piece. It is computed with an angular similarity between
the key strength vector of a single frame and a cumulative average
of key strength vectors up until the adjacent previous frame as:

s(t) = 1−
cos−1cosθ

π
= 1−

1
π

cos−1 v(t) · v(t− 1)

||v(t)|| · ||v(t− 1)||
(1)

1http://bit.ly/mirtoolbox

where s(t) is tonal stability of the t-th frame, is an angle between
the two key strength vectors, v(t) is a key strength vector of the t-th
frame, and v(j) =

∑j
i = 1 v(i)/j is a cumulative moving average

of key strength vectors from the first to the j-th frame. The angular
similarity is bounded between 0 and 1, inclusively (1 when two
vectors are parallel, 0.5 when orthogonal, and 0 when opposite).
Thus, the tonal stability is also bounded between 0 and 1: 0 when
key strength vectors are in opposite directions (i.e., implied keys
are most distant on the cycle of fifths; in other words, they share
few common tones).

Using the tonal hierarchy profile (Krumhansl and Shepard,
1979) as an ideal chromagram, which yields a maximal key
strength of one (Figure 1A), it can be shown that if a chromagram
implies a distant key (e.g., C-major key in the F#-major key
context), its tonal stability would be close to zero. A geometrical
appreciation of the relations of key strength vectors can be made
by a low-dimensional projection using principal component
analysis (PCA). The first two principal components explained
65% of the total variance of all key strength vectors. When
the key strength vectors of the 12 major keys are projected to
the 2-dimensional plane of the first two principal components
(Figure 1B), it becomes clear that the key strength vectors of
C-major and F#-major are geometrically opposing. Therefore,
the (high-dimensional) angular similarity between them would
be close to zero (Figure 1C, marked by an arrow; not exactly
zero because of higher dimensions that are not visualized), which
is our definition of the tonal stability feature. On the other
hand, the key clarity can be seen as the maximal projection
to any of the 24 possible dimensions (i.e., maximal intensity
projection). Therefore, it is constant regardless of context. In
other words, the tonal stability quantifies how tonally stable
a particular frame is within the context of the entire piece,
whereas key clarity describes how strongly a tonal structure is
implicated in an absolute sense (see Supplementary Figure 1 for
an example comparison).

The length of a time window to compute spectrograms should
be long enough to cover the lower bound of pitch (i.e., 30 Hz;
Pressnitzer et al., 2001) but also not too long to exceed the
physiologically relevant spectral range. In the current work,
we used a sparse encoding of tonal features based on the
estimated beats and measures (see section “Rhythmic Features”).
Specifically, at each beat (or measure), a time window was defined
from the current to the next beat (or measure). For each time
window, the spectrogram, cochleogram, and key strength vectors
were estimated using the MIR function mirkeystrength, and
the key clarity and tonal stability were calculated as described
above. The approach of the sparse encoding is similar to
assigning the “semantic dissimilarity” value of a word at the
onset in a natural speech study, where N400-like temporal
response functions (TRFs) were found (Broderick et al., 2018),
and modeling the melodic entropy at the onset of a note (Di
Liberto et al., 2020). Previous studies have found an early
component (i.e., ERAN; Koelsch et al., 2003) in response to
violations within local tonal contexts and a late component
(i.e., N400; Zhang et al., 2018) during more global contexts.
Therefore, tonal stability was expected to be encoded within
these latencies.
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FIGURE 1 | Key strength and tonal stability. (A) Key strength of the C-major profile (red) and F#-major profile (blue) are computed for all 24 target keys (i.e., Pearson
correlation between profiles). The profiles were used as ideal chromagrams that yield a maximal key clarity of one. Upper cases represent major keys, and lower
cases represent minor keys. (B) For geometrical intuition of tonal stability, the key strength vectors of 12 major keys are projected on the 2-dimensional plane of the
first two principal components, which together explained 65% of the total variance. (C) Tonal stability of the C-major profile with respect to all 24 reference keys (i.e.,
in all contexts) are computed (i.e., the angular similarity between key strength vectors) and sorted in descending order. Note that key clarity of the C-major profile is
always one while its tonal stability varies depending on the reference key (i.e., context).

Rhythmic Features
As low-level rhythmic feature, we used beats (Grahn and
McAuley, 2009; Stober, 2017). Beats were extracted using the
dynamic beat tracker in the Librosa library2 and included in
the shared public data. We modeled beats using a unit impulse
function (i.e., 1’s at beats, 0’s otherwise).

As high-level rhythmic feature, we used meter, which was
based on beats. We weighted the strength of each beat in a musical
excerpt, according to a beat accent system that is most prevalent
in Western classical music, by separating beats into three tiers:
strong, middle, and weak (Grahn and Rowe, 2009; Vuust and
Witek, 2014). A separate unit impulse function was created for
each of the three levels. Note that the tiers correspond to the
strength of a beat, not the position (or phase) within a measure.
The breakdown applies as follows:

4/4 meter signature: beat 1=strong; beat 2=weak; beat
3=middle; and beat 4=weak.

3/4 meter signature: beat 1=strong; beat 2=weak;
and beat 3=weak.

OpenMIIR Dataset
We used the public domain Open Music Imagery Information
Retrieval Dataset available on Github3, which is designed to
facilitate music cognition research involving EEG and the
extraction of musical features. Given that we only analyzed
a subset of the dataset, we will only summarize the relevant
materials and methods. Complete details of the experimental
procedure can be found in the original study (Stober, 2017).

2https://github.com/bmcfee/librosa
3https://github.com/sstober/openmiir

Participants
Data was collected from ten participants. One participant was
excluded from the dataset due to coughing and movement-
related artifacts, resulting in a total of nine participants. Seven
participants were female, and two were male. The average age
of the participants was 23. Participants filled out a questionnaire
asking about their musical playing and listening background.
Seven out of the nine participants were musicians, which was
defined as having engaged in a regular, daily practice of a
musical instrument (including voice) for one or more years.
The average number of years of daily musical practice was
5.4 years. The average number of formal years of musical
training was 4.9 years.

Prior to the EEG recording, participants were asked to name
and rate how familiar they were with the 12 stimuli of the
experiment. Also, before the EEG experiment, they were asked
to tap/clap along to the beat, which was then given a score by
the researcher based on accuracy. Seven participants were given
100% on their ability to tap along to the beat, and two were given
a 92%. All participants were familiar with 80% or more of the
musical stimuli.

Stimuli
There were 12 different, highly familiar musical excerpts that
ranged between 6.9 and 13.9 s, with an average duration of
10.5 s each. Exactly half of the songs had a 3/4 time signature,
and the other songs had a 4/4 time signature. Table 1 lists
the popular songs that the stimuli were taken from. The tonal
features of these stimuli are shown in Figure 2. The two features
were not significantly correlated in any of the stimuli (minimum
uncorrected-p = 0.08).
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TABLE 1 | Descriptive statistics of tonal features.

Stim# Title Duration
(sec)

BPM BPB Key clarity
(mean ± SD)

Tonal stability
(mean ± SD)

Corr.
(p-value)

Key clarity
(mean ± SD)

Tonal stability
(mean ± SD)

Corr.
(p-value)

1 Chim Chim Cheree (lyrics) 13.3 213 3 0.53 ± 0.15 0.63 ± 0.19 0.17 (0.26) 0.52 ± 0.13 0.60 ± 0.24 0.16 (0.57)

2 Take me out to the ballgame (lyrics) 7.7 189 3 0.56 ± 0.14 0.63 ± 0.18 0.19 (0.42) 0.59 ± 0.15 0.60 ± 0.29 0.64 (0.12)

3 Jingle Bells (lyrics) 9.7 200 4 0.51 ± 0.16 0.65 ± 0.18 −0.09 (0.66) 0.55 ± 0.12 0.58 ± 0.28 0.14 (0.73)

4 Mary Had a Little Lamb (lyrics) 11.6 160 4 0.65 ± 0.11 0.68 ± 0.16 0.25 (0.19) 0.67 ± 0.12 0.64 ± 0.28 0.10 (0.81)

11 Chim Chim Cheree (no lyrics) 13.9 206 3 0.69 ± 0.10 0.72 ± 0.21 −0.00 (1.00) 0.70 ± 0.11 0.69 ± 0.27 −0.34 (0.22)

12 Take me out to the ballgame (no
lyrics)

7.9 185 3 0.65 ± 0.12 0.69 ± 0.18 0.02 (0.95) 0.71 ± 0.04 0.67 ± 0.28 −0.08 (0.85)

13 Jingle Bells (no lyrics) 9.0 200 4 0.60 ± 0.12 0.72 ± 0.19 0.34 (0.08) 0.54 ± 0.10 0.63 ± 0.31 0.14 (0.76)

14 Mary Had a Little Lamb (no lyrics) 12.2 160 4 0.76 ± 0.09 0.81 ± 0.16 0.15 (0.44) 0.71 ± 0.10 0.78 ± 0.32 −0.33 (0.43)

21 Emperor Waltz 8.3 175 3 0.76 ± 0.11 0.76 ± 0.19 0.14 (0.54) 0.78 ± 0.14 0.71 ± 0.30 −0.15 (0.72)

22 Harry Potter theme 16.0 166 3 0.67 ± 0.16 0.68 ± 0.26 −0.03 (0.84) 0.72 ± 0.13 0.63 ± 0.31 −0.12 (0.69)

23 Star Wars theme 9.2 104 4 0.66 ± 0.16 0.70 ± 0.25 0.19 (0.50) 0.65 ± 0.11 0.68 ± 0.46 0.48 (0.52)

24 Eine Kleine Nachtmusik 6.9 140 4 0.64 ± 0.07 0.67 ± 0.23 0.10 (0.75) 0.69 ± 0.10 0.51 ± 0.36 −0.09 (0.91)

BPM, beats per minute; BPB, beats per bar; Corr., Pearson correlation coefficient between key clarity and tonal stability.

Procedure
We analyzed the “Perception” condition, which was the first
out of four experimental conditions. The rest of the conditions
involved musical imagery tasks, which we did not include in our
analysis. Each condition consisted of five blocks. All 12 stimuli
were played in a randomized order once per block. This resulted
in a total of 60 trials for each condition (i.e., five repetitions
per stimulus). In each trial, a stimulus was preceded by two
measures of cue beats.

Data Acquisition and Preprocessing
Neural signals were measured during the experiment using a
BioSemi Active-Two EEG system in 64 channels at a sampling
rate of 512 Hz. Independent components associated with
ocular and cardiac artifacts were detected using the MNE-
python4 (RRID:SCR_005972; v0.20.7) (Gramfort et al., 2013),
of which demixing matrices were also included in the open
dataset. After projecting out the artifact-related components
using mne.preprocessing.ica.apply, the EEG signal was converted
to handle in EEGLAB5 (RRID:SCR_007292; v14.1.2). Then, the
data was bandpass-filtered between 1 and 8 Hz using Hamming
windowed sinc finite impulse response (FIR) filter using
pop_eegfiltnew as the low-frequency activity was previously
found to encode music-related information (Di Liberto et al.,
2020). Trials were epoched using pop_epoch between 100 ms
after music onset (i.e., after beat cues) and 100 ms before
music offset with a window length of 200 ms for tonal feature
extraction. The EEG signal was then down-sampled to 128 Hz
(pop_resample) and normalized by Z-scoring each trial.

mTRF Analysis
Model Prediction
The linearized encoding analysis was carried out using the mTRF
MATLAB Toolbox6 (v2.1) created by Crosse et al. (2016). In a

4https://mne.tools/stable/index.html
5https://sccn.ucsd.edu/eeglab/index.php
6https://github.com/mickcrosse/mTRF-Toolbox

FIR model, we fit a set of lagged stimulus features to response
timeseries to estimate time-varying causal impacts of features to
the response timeseries:

y(t) =
D∑

d = 0

x(t − d)b(d)

where y(t) and x(t) are a response and a feature at a time point t,
respectively, and b(d) is a weight that represents the impact of a
feature at a delay d. A timeseries of these weights (i.e., a transfer
function or a kernel of a linear filter) is called a TRF. In the mTRF
encoding analysis, we use a regularized regression (e.g., ridge)
to estimate TRFs where multicollinearity exists among multiple
features. The encoding analysis is performed at each channel
at a time (i.e., multiple independent variables and a univariate
dependent variable). The validity of the estimated TRFs is often
tested via cross-validation (i.e., convolving test features with a
kernel estimated from a training set to predict test responses).

When considering multiple features, the FIR model can be
expressed in a matrix form:

y = Xβ+ ε (2)

where y ∈ RT × 1 is an EEG response vector from a given
channel over T time points, X ∈ RT × PD is a feature matrix of
which columns are P features lagged over D time points (i.e., a
Toeplitz matrix), β ∈ R1 × PD is a vector of unknown weights,
and ε ∈ RT × 1 is a vector of Gaussian noise with unknown serial
correlation. Note that a feature set could consist of multiple sub-
features (e.g., 16-channel cochleogram and 3-channel meter). The
vector β is concatenated weights over D delays for P features.
In the current analysis, we column-wise normalized y and X by
taking Z-scores per trial.

A ridge solution of Eq. 2 is given (Hoerl and Kennard, 1970)
as:

β̂(λ) =
(

XTX + λI
)−1

XTy, (3)
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FIGURE 2 | Tonal features of musical stimuli. Envelope (gray), key clarity (green), and tonal stability (orange) are shown. Envelopes outside the analysis window are
shown in dashed lines. Stimulus IDs are noted on the left.

where I ∈ RPD × PD is an identity matrix and λ 0 is a
regularization parameter that penalizes (i.e., shrinks) estimates.
That is, the ridge estimates are dependent on the selection of
regularization. The lambda was optimized on training data (i.e.,
a lambda that yields the maximal prediction accuracy for each
channel), and the validity of this model was tested on testing data
(i.e., predicting EEG response based on given features) through
the leave-one-out cross-validation scheme using mTRFcrossval,
mTRFtrain, and mTRFevalute. The prediction accuracy was
measured by the Pearson correlation coefficient. Specifically, we
used 79 delays from −150 ms to 450 ms and 21 loglinearly
spaced lambda values from 2−10 to 210. We discarded time points
where the kernel exceeded trial boundaries (i.e., valid boundary
condition) to avoid zero-padding artifacts (e.g., high peaks at
zero-lag from short trials).

Model Comparison
We created multiple models with varying terms and compared
prediction accuracies to infer the significance of encoding of a
specific feature in the responses. The families of models were:

y = [Xenv] [βenv] + ε (4)

y =
[

Xenv Xbeat
] [ βenv

βbeat

]
+ ε (5-1)

y =
[

Xenv Xmeter
] [ βenv

βmeter

]
+ ε (5-2)

y =
[

Xenv Xmeter Xclarity
] βenv

βmeter
βclarity

 + ε (6-1)

y =
[

Xenv Xmeter Xstability
] βenv

βmeter
βstability

 + ε (6-2)

where Xi and βi are a Toeplitz matrix and a weight vector for the
i-th feature, respectively. Equation 4 served as a baseline model
and Eq. 5 are rhythmic models and Eq. 6 are tonal models while
covarying rhythmic features. Comparisons of interest were: (a)
Eq. 5-1 vs. Eq. 4, (b) Eq. 5-2 vs. Eq. 5-1, (c) Eq. 6-1 vs. Eq. 5-
2, and (d) Eq. 6-2 vs. Eq. 5-2. Note that the comparisons were
made to infer the effect of the addition of each feature despite
their multicollinearity. That is, if there is no uniquely explained
variance by the last term, the full model (with the last term)
cannot yield greater prediction accuracy than the reduced model
(without the last term).

Cluster-based Monte Carlo permutation test (Maris and
Oostenveld, 2007), using ft_statistics_montecarlo in FieldTrip7

7https://www.fieldtriptoolbox.org/
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(RRID:SCR_004849; v20180903), was used to calculate cluster-
wise p-values of one paired t-test on differences in prediction
accuracies across all channels with the summed t-statistics as
a cluster statistic. 10,000 permutations with replacement were
made to generate null distributions. In permutation tests, a
cluster-forming threshold does not affect the family-wise error
rate (FWER) but only sensitivity (see Maris, 2019 for formal
proof). Thus, clusters were defined at an arbitrary threshold of the
alpha-level of 0.05, and the cluster-wise p-values are thresholded
at the alpha-level of 0.05 to control the FWER to 0.05.

To estimate the variation of the point estimate of a prediction
accuracy difference, we bootstrapped cluster-mean prediction
accuracies for 10,000 times to compute 95% confidence intervals.
For the visualization of results, modified versions of topoplot in
EEGLAB and cat_plot_boxplot in CAT128 are used.

Control Analysis
To demonstrate the false positive control and the sensitivity of
the current procedure, we randomized the phases of envelopes
(Menon and Levitin, 2005; Abrams et al., 2013; Farbood et al.,
2015; Kaneshiro et al., 2020) to create control features with
disrupted temporal structure, but with identical spectra. If the
prediction is not due to the encoding of temporal information,
this control feature (i.e., phase-randomized envelope) would be
expected to explain the EEG data as well as the original envelope.
Specifically, the phases of envelopes were randomized via fast
Fourier transform (FFT) and inverse FFT for each stimulus.
That is, within each randomization, the randomized envelope
was identical throughout repeated representations over trials.
MATLAB’s fft and ifft were used. The phase randomization,
model optimization, and model evaluation processes were
repeated 50 times across all participants. Then, the prediction
accuracies averaged across phase-randomizations were compared
with the prediction accuracies with the actual envelopes using
the cluster-based Monte Carlo permutation test with the same
alpha-levels as in the main analysis.

RESULTS

Envelope Tracking
The control analysis revealed that the mTRF analysis sensitively
detects envelope tracking compared to models with phase-
randomized envelopes (Figure 3). In a cluster with 38 channels
over the central and frontal scalp regions, the prediction accuracy
with the observed envelopes was significantly higher than
randomized envelopes [cluster-mean rrand = 0.0517; robs = 0.0670;
robs − rrand = 0.0153, 95% CI = (0.0091, 0.0217); summary
statistics 6T = 143.7; cluster-p = 0.0001]. As discussed above (see
section “Model Comparison”), the higher prediction accuracy
of the full model than that of the reduced model (or the null
model) indicates that the term of the full model that differs from
the reduced (or null) model adds a unique contribution to the
prediction, reflecting the neural encoding of the corresponding
information. Here, the results suggest that the sound envelope

8http://www.neuro.uni-jena.de/cat/

is encoded in the cluster. Note that the peaks at the zero-
lag in the TRFs (Figure 3E) are due to the free boundary
condition (zero-padding at the boundaries of trials; note that
the “condition” here refers to a mathematical constraint and
not relevant to experimental conditions), which predicted trial-
onset responses in phase-randomized models. When a weaker
null model without the trial-onset was compared (i.e., valid
boundary condition), the testing revealed increased prediction
accuracy in 56 electrodes (cluster-p = 0.0001), presumably
reflecting the widespread auditory activity via volume conduction
(figure not shown).

Rhythmic Hierarchy
With respect to the low-level rhythmic feature, the analysis
revealed significant encoding of beat (Eq. 5-1 vs. Eq. 4; Figure 4)
in a cluster of 20 central channels [cluster-mean rreduced = 0.0314;
rfull = 0.0341; rfull − rreduced = 0.0027, 95% CI = (0.0013, 0.0042);
6T = 52.4; cluster-p = 0.0234]. Similarly to the envelope tracking
results, a significant increase of prediction accuracy indicates a
unique contribution of beat in addition to envelope.

With respect to the high-level rhythmic feature, the analysis
revealed significant encoding of meter (Eq. 5-2 vs. Eq. 5-1;
Figure 5) in a cluster of 16 frontal and central channels [cluster-
mean rreduced = 0.0337; rfull = 0.0398; rfull − rreduced = 0.0062,
(0.0023, 0.0099); 6T = 34.6; cluster-p = 0.0137]. Likewise, a
significant increase of prediction accuracy indicates a unique
contribution of meter in addition to envelope and beat. The TRFs
for meter showed different patterns by accents.

Tonal Hierarchy
We did not find a significant increase of prediction accuracy
for either key clarity or tonal stability calculated on each beat
or measure (Eq. 6-1 vs. Eq. 5-2, minimum cluster-p = 0.1211;
Eq. 6-2 vs. Eq. 5-2, minimum cluster-p = 0.0762; Supplementary
Figures 2–5).

DISCUSSION

Validity of the Proposed Framework
The view that individual elements in natural music may not
produce the same effect as they do in isolation is not new.
It has been claimed that music is not an objective entity but
rather something that is experienced and perceived, raising
the need for a dynamic, event-based processing framework
(Reybrouck, 2005). The fundamental issue, however, is that
often diverse musical features covary to maximize emotional
effect (e.g., slow and elegiac melodies in Niccolò Paganini’s
Caprice for Solo Violin Op. 1 No. 3 in E minor and energetic
arpeggios and triple stops in No. 1 in E major; or subdued,
low vocals in Nirvana’s melancholic “Something In The Way”
and loud, angry drums in “Smells Like Teen Spirit”). Unless
hundreds (if not thousands) of natural stimuli are used (Eerola
et al., 2009; Cowen et al., 2020), it is impossible to tease out
the effect of one element (or an independent component of
elements) from another with a small number of stimuli. For
this reason, it has been an established tradition to isolate and
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FIGURE 3 | Envelope encoding. (A,B) Mean prediction accuracies averaged across subjects are shown in topoplots for a null model (Erand, phase-randomized
envelope) and a faithful model (Eobs, observed envelope), respectively. (C) t-statistics comparing differences in prediction accuracies are shown. Channels included
in significant clusters (cluster-p < 0.05) are marked in white. (D) Prediction accuracies averaged within the cluster with the smallest p-value are plotted for each
participant. (E) Temporal response functions averaged within the cluster are shown. Shades mark one standard error of the mean across participants.

FIGURE 4 | Beat encoding. (A,B) Mean prediction accuracies of a reduced model (E, Envelope) and a full model (E + B, Envelope + Beat), respectively.
(C) t-statistics comparing differences in prediction accuracies are shown. Channels included in significant clusters (cluster-p < 0.05) are marked in white.
(D) Prediction accuracies averaged within the cluster with the smallest p-value are plotted for each subject. (E,F) Temporal response functions of features averaged
across electrodes within the cluster are shown. TRFs are Z-scored across lags for different regularizations across electrodes/participants.
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FIGURE 5 | Meter encoding. (A,B) Mean prediction accuracies of a reduced model (E + B, Envelope + Beat) and a full model (E + B + M, Envelope + Beat + Meter),
respectively. (C) t-statistics comparing differences in prediction accuracies are shown. Channels included in significant clusters (cluster-p < 0.05) are marked in
white. (D) Prediction accuracies averaged within the cluster with the smallest p-value are plotted for each subject. (E,F) Temporal response functions of features
averaged within the cluster are shown. (G) Temporal response functions of the meter features (strong beat, middle beat, and weak beat; e.g., 4/4/:
strong-weak-middle-weak) averaged within the cluster are shown. TRFs are Z-scored across lags for different regularizations across electrodes/participants.

orthogonalize musical features or acoustic properties to study
their effects in music psychology and cognitive neuroscience of
music. However, now that computational models can translate
naturalistic stimuli into relevant features (i.e., linearizing
functions), recent human neuroimaging studies have shown that
it is possible to analyze complex interactions among natural
features while taking advantage of the salience of naturalistic
stimuli to evoke intense emotions and provide ecologically
valid contexts (Goldberg et al., 2014; Sonkusare et al., 2019;
Jääskeläinen et al., 2021).

In the current study, we demonstrated a simple yet powerful
framework of a linearized encoding analysis by combining the
MIR toolbox (a battery of model-based features) and mTRF
Toolbox (FIR modeling with ridge regression). First, we showed
that ridge regression successfully predicted envelope-triggered
cortical responses in the ongoing EEG signal in comparison to
null models with a phase-randomized envelope. Furthermore,

our proposed framework detected cortical encoding of rhythmic,
but not tonal, features while listening to naturalistic music.
In addition, the estimated transfer functions and the spatial
distribution of the prediction accuracies made neuroscientific
interpretations readily available. These findings differentiate
themselves from previous studies using similar regression
analyses that only used either monophonic music or simple,
low-level acoustic features, such as note onset (Sturm et al., 2015;
Di Liberto et al., 2020).

Cortical Encoding of Musical Features
We showed cortical encoding of beats and meter during the
listening of every day, continuous musical examples. This was
observed most strongly over frontal and central EEG channels,
which have long been implicated as markers of auditory
processing activity (Näätänen and Picton, 1987; Zouridakis
et al., 1998; Stropahl et al., 2018). However, key clarity and
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tonal stability were not conclusively represented in the cortical
signal in our models.

Unlike the tonal features, both of the rhythmic features
(beat and meter) were encoded strongly in the neural signal.
The TRF for beat showed a steady periodic signal, consistent
with the finding in the original OpenMIIR dataset publication
by Stober (2017) that the peaks of the event-related potentials
(ERPs) corresponded to the beat of the music. This means
that both the ERPs in the study by Stober (2017) and our
beat TRFs displayed large peaks at zero-lag, implying that
beats may be anticipated. The possibility of an anticipatory
mechanism of beats is consistent with the view that humans
may possess an endogenous mechanism of beat anticipation that
is active even when tones are unexpectedly omitted (Fujioka
et al., 2009). The relatively early latency of the additional TRF
peaks between 100 and 200 ms suggests that beats may be
processed in a bottom-up fashion as well. Humans engage in
an active search for the beat when it becomes less predictable
by adaptively shifting their predictions based on the saliency
of the beats in the music, suggesting that beats also provide
useful exogenous cues (Toiviainen et al., 2020). The use of
continuous music and EEG in the proposed framework lends
itself particularly well to determining these various mechanisms
of beat perception.

It has also been shown that different populations of neurons
entrain to beats and meter (Nozaradan et al., 2017). Moreover,
phase-locked gamma band activity has further suggested a
unique neural correlate to meter (Snyder and Large, 2005).
Extending these previous findings, the current results in the
low frequency band (1–8 Hz) revealed this dichotomy between
beats and meter through their different topologies. Beat was
encoded over a tight cluster of central channels, but meter was
encoded over a large cluster of frontal channels. The significant
increase in prediction accuracy observed over widespread frontal
channels for meter might suggest a distant source although it
is not possible to uniquely determine the source location only
from the sensor topography (i.e., inverse problem). That is, the
topography also could be due to widely spread but synchronized
cortical sources. However, there is evidence based on deep
brain stimulation and scalp recording that EEG is sensitive
to subcortical sources (Seeber et al., 2019). The putamen, in
particular, has been proposed as a region of meter entrainment,
while the cortical supplementary motor area is more associated
with beats (Nozaradan et al., 2017; Li et al., 2019). The distinct
topologies observed between the beats and meter features are
especially intriguing given the relatively short duration of each
stimulus (10.5 s on average).

It was unexpected that neither of the tonal features was
significantly correlated with the EEG signal, given that previous
studies suggested that information about these tonal structures
is reflected in non-invasive neural recordings. For instance,
previous ERP studies showed stronger responses to deviant
harmonies than normative ones (Besson and Faïta, 1995; Janata,
1995; Koelsch et al., 2003). Additionally, in a recent MEG
study (Sankaran et al., 2020), a representational similarity
analysis revealed that distinctive cortical activity patterns at the
early stage (around 200 ms) reflected the absolute pitch (i.e.,

fundamental frequencies) of presented tones, whereas late stages
(after 200 ms onward) reflected their relative pitch with respect
to the established tonal context (i.e., tonal hierarchy) during the
listening of isolated chord sequences and probe tones played by
a synthesized piano. In a study with more naturalistic musical
stimuli (Di Liberto et al., 2020), the cortical encoding of melodic
expectation, which is defined by how surprising a pitch or
note onset is within a given melody, was shown using EEG
and the TRF during the listening of monophonic MIDI piano
excerpts generated from J. S. Bach Chorales. With respect to key
clarity, it was shown that key clarity correlates significantly with
behavioral ratings (Eerola, 2012) and is anti-correlated with the
fMRI signal timeseries in specific brain regions, including the
Rolandic Operculum, insula, and precentral gyrus, while listening
to modern Argentine Tango (Alluri et al., 2012). In a replication
study with identical stimuli (Burunat et al., 2016), key clarity
showed scattered encoding patterns across all brain regions with
weaker magnitudes of correlations, although such an association
with evoked EEG responses (or the absence thereof) has not
been previously reported. One possibility for the current negative
finding with respect to tonal features is that the musical stimuli in
the current dataset might not have been optimal for our interest
in the tonal analysis given their tonal simplicity (see section
“Limitations” for further discussion).

Limitations
The stimuli were relatively short in duration (10-s long
on average) and often repetitious in nature. These stimulus
characteristics limited the ability to observe the response to
larger changes in key clarity and tonal stability. For instance, the
ranges of standard deviation of key clarity and tonal stability
were (0.0667, 0.1638) and (0.1570, 0.2607), respectively, when
calculated on beats. These were narrower than typical musical
stimulus sets [e.g., 360 emotional soundtrack 15-s excerpts
(Eerola and Vuoskoski, 2011); (0.0423, 0.2303) and (0.11882,
0.3441) for key clarity and tonal stability, respectively]. These
limitations (short lengths and limited variation in tonality) might
have contributed to negative findings in the current study.
Another limitation in the dataset was the small number of
participants (n = 9), which limited statistical power. Future
neuro-music public datasets (e.g., the one developed by Grahn
et al., 2018) may want to consider using longer, more dynamic
musical excerpts, especially ones that have increased dramatic
shifts in tonality with more participants. The dataset also did
not contain simultaneous behavioral ratings of the music, which
resulted in us being unable to analyze our data alongside
measures such as emotion.

One limitation in our analysis is that we used a single
regularization parameter for all features, as currently
implemented in the mTRF Toolbox. However, it has been
shown that using independent regularization for each feature set
(“banded ridge”) can improve the prediction and interpretability
of joint modeling in fMRI encoding analysis (Nunez-Elizalde
et al., 2019). Thus, it is expected that a systematic investigation

Frontiers in Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 665767

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-665767 July 12, 2021 Time: 17:45 # 11

Leahy et al. Tonal and Rhythmic Hierarchy Encoding

on the merits of banded ridge regression in mTRF analysis on
M/EEG data would benefit the community.

FUTURE DIRECTIONS AND
CONCLUSION

Ultimately, we hope that this framework can serve two broad
purposes. The first is for it to enhance the ecological validity of
future music experiments. The second is for it to be used as a
tool that can be paired with other metrics of interest. Emotion
is perhaps the most fitting application of this framework,
given the special ability of music to make us experience
intense feelings. Combining the current analytic framework
with behavioral measures like emotion will be especially useful
because it could shed light on what factors interact with our
anticipation of tonality and rhythm during music listening. In
particular, when combined with continuous behavioral measures,
such as emotion or tension, this might 1 day be used to
elucidate how changes in certain musical features make us
happy or sad, which could deepen our knowledge of how
music can be used therapeutically or clinically. Furthermore,
some current limitations of the tonal stability measure provide
future researchers with opportunities for innovation. Looking
forward, it would be useful to create a tonal stability measure
that can account for multiple (shifting) tonal centers within a
single piece of music.

In summary, we presented an analytical framework to
investigate tonal and rhythmic hierarchy encoded in neural
signals while listening to homophonic music. Though the
model did not demonstrate the presence of the proposed
tonal stability measure, it did successfully capture cortical
encoding of rhythmic hierarchy. Moreover, the framework
was able to differentiate the spatial encoding of low/high-
level features, as represented by the separate encoding of beat
and meter, suggesting distinct neural processes. The current
framework is applicable to any form of music by directly feeding
audio signals into the linearizing model. In addition, it has
the possibility of including other time-resolved measures to
appropriately address the complexity and multivariate nature of
music and other affective naturalistic stimuli. This will bring
us to a more complete understanding of how tonality and
rhythm are processed over time and why the anticipation and
perception of these features can induce a variety of emotional
responses within us.
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Supplementary Material 

1 Supplementary Figures 

 

Supplementary Figure S1. Key clarity and tonal stability. As an example comparison, key clarity 
(blue) and tonal stability (red) were calculated for a 30-s excerpt from J. S. Bach’s Prelude and Fugue 
in C# major, BWV 848 with 50% overlapping 200-ms frames. A modulation to a key (D# minor) that 
is distant from the overall key of the excerpt (C# major) was detected by a sudden decrease in tonal 
stability (marked with blue arrows), whereas key clarity was insensitive to such tonal relationships. 
The musical score is in the public domain1. 

  

 
1 https://imslp.org/wiki/Prelude_and_Fugue_in_C-sharp_major,_BWV_848_(Bach,_Johann_Sebastian)  
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Supplementary Figure S2. Key-clarity-on-beat encoding. (A, B) Mean prediction accuracies of a 
reduced model (E+B+M: Envelope + Beat + Meter) and a full model (E+B+M+KCb: Envelope + 
Beat + Meter + Key clarity on beats), respectively. (C) T-statistics comparing differences in 
prediction accuracies are shown. (D) Prediction accuracies averaged across all channels are plotted 
for each subject. (E–H) Temporal response functions of features averaged across all channels are 
shown. TRFs are Z-scored across lags for different regularizations across electrodes/subjects. 
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Supplementary Figure S3. Tonal-stability-on-beat encoding. (A, B) Mean prediction accuracies 
of a reduced model (E+B+M: Envelope + Beat + Meter) and a full model (E+B+M+TSb: Envelope + 
Beat + Meter + Tonal stability on beats), respectively. (C) T-statistics comparing differences in 
prediction accuracies are shown. (D) Prediction accuracies averaged across all channels are plotted 
for each subject. (E–H) Temporal response functions of features averaged across all channels are 
shown. TRFs are Z-scored across lags for different regularizations across electrodes/subjects. 
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Supplementary Figure S4. Key-clarity-on-measure encoding. (A, B) Mean prediction accuracies 
of a reduced model (E+B+M: Envelope + Beat + Meter) and a full model (E+B+M+KCm: Envelope 
+ Beat + Meter + Key clarity on measures), respectively. (C) T-statistics comparing differences in 
prediction accuracies are shown. (D) Prediction accuracies averaged across all channels are plotted 
for each subject. (E–H) Temporal response functions of features averaged across all channels are 
shown. TRFs are Z-scored across lags for different regularizations across electrodes/subjects. 
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Supplementary Figure S5. Tonal-stability-on-measure encoding. (A, B) Mean prediction 
accuracies of a reduced model (E+B+M: Envelope + Beat + Meter) and a full model (E+B+M+TSm: 
Envelope + Beat + Meter + Tonal stability on measures), respectively. (C) T-statistics comparing 
differences in prediction accuracies are shown. (D) Prediction accuracies averaged across all 
channels are plotted for each subject. (E–H) Temporal response functions of features averaged across 
all channels are shown. TRFs are Z-scored across lags for different regularizations across 
electrodes/subjects. 
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