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Abstract This article elucidates a methodological pitfall of cross-validation for evaluating9

predictive models applied to naturalistic neuroimaging data—namely, ‘reverse double-dipping’10

(RDD). In a broader context, this problem is also known as ‘leakage in training examples’, which is11

difficult to detect in practice. RDD can occur when predictive modeling is applied to data from a12

conventional neuroscientific design, characterized by a limited set of stimuli repeated across trials13

and/or participants. It results in spurious predictive performances due to overfitting to repeated14

signals, even in the presence of independent noise. Through comprehensive simulations and15

real-world examples following theoretical formulation, the article underscores how such16

information leakage can occur and how severely it could compromise the results and conclusions17

when it is combined with widely spread informal reverse inference. The article concludes with18

practical recommendations for researchers to avoid RDD in their experiment design and analysis.19

20

Introduction21

Recent advancement of ‘naturalistic neuroimaging’ has opened up new exciting developments in22

various fields of human neuroscience (Sonkusare et al., 2019; Nastase et al., 2020; Hamilton and23

Huth, 2020). The key idea of naturalistic neuroimaging is that experiments with naturalistic (i.e.,24

real-world) stimuli are essential when investigating complex human behaviors. This latest rein-25

carnation of ecological psychology (Brunswik, 1943; Gibson, 1978) has gained wide popularity in26

psychology and human neuroscience. In particular, this idea has been widely adopted in domains27

where high-order cognitive and/or affective processes are involved, and a simple contrastive ex-28

perimental approach can explain only little. For example, comparing brain responses to music29

vs. non-music to find neural correlates of “music perception“ may be under an overly reduction-30
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ist assumption (i.e., “music-as-fixed-effect“ fallacy; Kim, 2022) that the human brain is governed by31

simple, interpretable rules that can extrapolate to explain complex behaviors (for more discussion,32

see Nastase et al., 2020).33

Currently, one of the most popular frameworks in analyzing naturalistic neuroimaging data is34

known as ‘linearized encoding analysis’ (for a comprehensive review of the encoding models in the35

music domain, see Kim, 2022). This is a method that identifies how of a time-invariant system (e.g.,36

the human brain or an artificial neural network [ANN]) transforms information from a stimulus to37

a response, by separating separates the whole transformation into non-linear mapping and linear38

mapping (Wu et al., 2006; Naselaris et al., 2011). Often, the non-linear mapping (‘linearization’) is39

given by the researcher’s hypothesis (i.e., “the human language system utilizes information X and Y but40

not Z”) and the linear mapping is found from the given linearization and human responses. This41

approach has been more widely used in the era of deep neural networks. For example, studies42

have shown the potentials of transfer learning of image classification models (Allen et al., 2022) or43

large-language models (Caucheteux et al., 2023) to explain human behaviors and neural activity.44

Besides encoding analysis, model-free approaches have been popularized. For example, the45

synchrony of neural activity over time across multiple participants when watching an identical nat-46

uralistic stimulus (i.e., the samemovie) has been suggested to quantify stimulus-driven effects (Has-47

son et al., 2004). Without explicitmodeling of encoded information, the similarity in responses over48

multiple repetitions can attribute repeated responses to the repeated stimuli—no matter which49

information is being processed. The analysis of neural synchrony draws conclusions from strong50

correlations between the neural responses of different participants or trials while presenting iden-51

tical stimuli that the certain (but unspecified) information in the stimulus evoked the time-locked52

neural responses.53

More recently, data-driven segmentation algorithms such as hiddenmarkovmodels have been54

proposed to model high-level concepts such as event boundaries in narratives (Baldassano et al.,55

2018). Formodel-free approaches, the repetition of identical stimuli is the key reference of the anal-56

ysis. Thus, many naturalistic neuroscience experiments inspired by such approaches presented57

identical stimuli to multiple participants.58

Morebroadly, stimulus repetition remains a cornerstoneof experimental design in neuroscience.59

From the long tradition of event-related potential (ERP) experiments and the block-design in func-60

tional magnetic resonance imaging (fMRI), repetition has been the gold standard for cancelling out61

non-time-locked noise and isolating the time-locked signal.62

However, in encoding analysis, time-locked responses to repeated stimuli, even with indepen-63

dent noise, could introduce information leakage, disabling regularization, ultimately leading to a64

false conclusion where irrelevant information is mistaken as relevant to human neural processes.65

This paper explains how such a fallacy could occur in the Theory section, identifies contributing fac-66

tors based on simulations in the Simulation section, and demonstrates real-world cases in the Real67

Data section. Finally, implications for future analyses and experiments are discussed and practical68

recommendations are given in the Discussion section.69
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Theory70

Types of information leakage71

In essence, information leakage is a circular fallacy. Leakage in data mining and machine learning72

(or more generally, in predictive modeling) has been categorized into multiple cases: (i) leaking73

features, (ii) leakage by design decisions, (iii) leakage in training examples (Kaufman et al., 2012).74

In data-mining competitions, the training data (a set of feature-target pairs) and the test (hold-75

out) data (an independent set of feature-target pairs) are separated by the organizer and only the76

training data and test features are provided to contenders. Contenders create their predictive77

models and submit their predictions on the test targets so that the organizer can compare their78

hold-out validation performances objectively, under the assumption that the curated data is highly79

representative of real-world problems.80

In cross-validation, one individual researcher plays both the role of an organizer (i.e., partition-81

ing data at hand into training and test sets) and that of a contender (i.e., modeling associations82

between feature and response in the training set and predicting responses from features in the83

test set). The leaking features could be information that is seemingly random but contains highly84

predictive information by accidental association (or overlooked failure of dissociation) that exist85

in both the training and test sets. Although in natural science no human organizer will create a86

dataset, mistaking confounding features as predictive or even causal is not unheard of (Nuzzo,87

2015).88

An once prevalent—but still not uncommon—case of the circular fallacy in neuroscience is a89

selective analysis based on the same data, which is widely known as double-dipping (Kriegeskorte90

et al., 2009). This can be understood as leakage by design decisions. Double-dipping can also occur91

in the context of cross-validation. For example, selecting features from the entire dataset prior to92

splitting (i.e., using information from both of a training set and a test set) would leak information93

(including noise) from the test set to the training set. In this case, it is you who dips the data into94

analysis twice.95

Figure 1. (a) In double-dipping, you dip an identical
data point twice (the same stimulus and identical
noise). (b) In reverse double-dipping, the dataset dips
you twice, unbeknownst to you, with non-identical
data points (the same stimulus but independent
noise).

The last kind, leakage in training exam-96

ples, occurs due to an incidental similarity97

between training and test sets. This is also98

known as twinning: i.e., having one individ-99

ual participant in a training set and their100

twin in a test set. If a researcher fails101

to recognize the true relationship between102

the twins, any randomassociation stemming103

from their shared characteristics may spu-104

riously appear predictive. In this case, it105

is the data that dips you, twice—thus, it can106

be called reverse double-dipping (RDD; Fig-107

ure 1). In the following, I will formally illus-108

tratewhen/ RDDoccurs, especially in the con-109
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text of systems neuroscience.110

Finite impulse response model111

A finite impulse response (FIR) model is commonly used to identify a time-invariant linear system.112

Please see Table 1 for the definitions of variables and notations used in this article. Let us consider113

an FIR model:114

𝐲 = 𝐗𝐛 + 𝐞, (1)

where 𝐲 ∈ ℝ𝑇 ×1 is a response vector over 𝑇 time points of a single response unit (e.g., a channel115

or a voxel), 𝐗 ∈ ℝ𝑇 ×𝐹𝐷 is a nonzero Toeplitz design matrix of 𝐹 features1 with 𝐷 delays such that116

‖𝐱T(𝑖)𝐱(𝑖)‖ > 0 for all 𝑖 ∈ {1,⋯ , 𝐹𝐷}, 𝐱(𝑖) is the 𝑖-th column of 𝐗, ‖ ⋅ ‖ denotes the 𝑙2-norm, which leads117

to ‖𝐗T𝐗‖F > 0 where ‖ ⋅ ‖F denotes the Frobenius norm. 𝐛 ∈ ℝ𝐹𝐷×1 is an unknown weight vector118

(often called a temporal response function; or more generally a transfer function), 𝐞 ∈ ℝ𝑇 ×1 is a119

zero-mean, unit-variance Gaussian noise vector 𝐞 ∼ 𝑇 (𝟎, 𝐈𝑇 )where 𝐈𝑇 ∈ ℝ𝑇 × 𝑇 is an identity matrix.120

For convenience, we further assume that we standardize predictors and response variables prior121

to analysis so that their sample means are zero and sample variances are one.122

Here, let us assume that we have access to the true weights, which are nonzero (i.e., ‖𝐛‖ > 0).123

With this model, we can generate a training dataset and a test dataset using the identical weights124

𝐛 but independent predictors and noise:125

𝐲𝑖 = 𝐗𝑖𝐛 + 𝐞𝑖 = 𝐬𝑖 + 𝐞𝑖, (2)

where (⋅)𝑖 denotes the 𝑖-th independent partition in cross-validation with 𝑖 = 1 for a training set and126

𝑖 = 2 for a test set. The true signal is denoted as 𝐬𝑖 ≡ 𝐗𝑖𝐛 ∈ ℝ𝑇 ×1.127

To avoid overfitting to noise, regularization such as 𝑙2-norm penalty (i.e., ridge penalty) is often128

used.129

𝐛̂ =
(

𝐗T
1𝐗1 + 𝐋

)−1 𝐗T
1𝐲1, (3)

where 𝐋 ∈ ℝ𝐹𝐷×𝐹𝐷 is a Tikhonov regularization matrix. In the usual case of ridge regression (i.e., a130

single penalty applied to all predictors), 𝐋 = 𝜆𝐈𝐹𝐷. In the general case of multi-penalty ridge (Hoerl131

and Kennard, 1970), predictor-delay-wise penalties can be defined: 𝐋 = diag(𝜆1, 𝜆2,… , 𝜆𝐹𝐷). For132

now, we assume a single penalty applies to all predictors, except for the intercept, which remains133

unregularized.134

In practice, the hyperparameter (i.e., 𝜆) is typically optimized using the third, independent par-135

tition of data2 (Hastie et al., 2009) as:136

𝐛̂ =
(

𝐗T
1𝐗1 + ({𝐗1, 𝐲1}; {𝐗3, 𝐲3})

)−1 𝐗T
1𝐲1, (4)

where (⋅; ⋅) is an optimizer that finds the optimal regularization matrix 𝐋∗ minimizing prediction137

error for given pairs of design and response variables {𝐗𝑖, 𝐲𝑖} and {𝐗𝑗 , 𝐲𝑗}. With this, a regularized138

1While feature and predictor are often interchangeably used, in this article a feature refers to a variable that describes the
characteristics of interest of the input, while a predictor refers to a feature with a specific delay (i.e., each column of a design
matrix). That is, 𝐹 features and 𝐷 delays make 𝑃 = 𝐹𝐷 predictors.

2An independent set for optimization is known as a validation set in the statistical learning literature (Hastie et al., 2009).
However, in some machine learning literature (Varoquaux, 2018), this set is referred to as a test set, and the test set is referred
to as a validation set. To mitigate the confusion, this set for optimization is referred to as an optimization set.
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prediction for 𝐲2 based on 𝐗 is:139

𝐲̂2,𝐗 = 𝐗2𝐛̂ = 𝐗2
(

𝐗T
1𝐗1 + 𝐋∗)−1 𝐗T

1𝐲1 = 𝐏𝐗𝐲1, (5)

where 𝐏𝐗 ∈ ℝ𝑇 × 𝑇 is a regularized projection matrix based on 𝐗. Because of the standardization140

(‖𝐲‖ = 1) and the nonnegativity of the denominator, the expected value of a prediction accuracy141

metric (e.g., Pearson correlation) over random noise can be seen as proportional to the expected142

inner product of the prediction and the response as:143

𝔼
[

corr
(

𝐲̂2,𝐗, 𝐲2
)]

= 𝔼

[
(

𝐲̂2,𝐗
)T 𝐲2

‖𝐲̂2,𝐗‖‖𝐲2‖

]

∝ 𝔼
[

(

𝐲̂2,𝐗
)T 𝐲2

]

. (6)

This can be further expanded as:144

𝔼
[

(

𝐲̂2,𝐗
)T 𝐲2

]

= 𝔼
[

𝐲T1𝐏
T
𝐗𝐲2

]

= 𝔼
[

(𝐬1 + 𝐞1)T𝐏T𝐗(𝐬2 + 𝐞2)
]

= 𝐬T1𝐏
T
𝐗𝐬2 + 𝔼

[

𝐞T1
]

𝐏T𝐗𝐬2 + 𝐬T1𝐏
T
𝐗𝔼

[

𝐞2
]

+ 𝔼
[

𝐞T1
]

𝐏T𝐗𝐞2,

(7)

where only the first term remains nonzero since 𝔼 [𝐞] = 𝟎. That is,145

𝔼
[

corr
(

𝐲̂2,𝐗, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐗𝐬2. (8)

With a sufficiently strong signal ‖𝐛‖ ≫ 0, the optimal regularization approaches zero: 𝐋∗ ≈ 𝟎146

(Hastie et al., 2009), which allows for approximating the projection matrix as:147

𝐏𝐗 = 𝐗2
(

𝐗T
1𝐗1 + 𝐋∗)−1 𝐗T

1 ≈ 𝐗2
(

𝐗T
1𝐗1

)−1 𝐗T
1 . (9)

Consequently, Equation 8 can be approximated as:148

𝔼
[

corr
(

𝐲̂2,𝐗, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐗𝐬2

(9)
≈

(

𝐗1𝐛
)T

{

𝐗2
(

𝐗T
1𝐗1

)−1 𝐗T
1

}T
(

𝐗2𝐛
)

. (10)

Due to the symmetry of the inverse covariance
{

(

𝐗T
𝑖 𝐗𝑖

)−1
}T

=
{

(

𝐗T
𝑖 𝐗𝑖

)T
}−1

=
(

𝐗T
𝑖 𝐗𝑖

)−1 and the149

nonzero assumption ‖𝐗T
𝑖 𝐗𝑖‖F > 0, this can be further simplified as:150

𝔼
[

corr
(

𝐲̂2,𝐗, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐗𝐬2 ≈ 𝐛T𝐗T

1

[

𝐗1

{

(

𝐗T
1𝐗1

)−1
}T

𝐗T
2

]

𝐗2𝐛

= 𝐛T
(

𝐗T
1𝐗1

) (

𝐗T
1𝐗1

)−1 𝐗T
2𝐗2𝐛

= 𝐛T𝐗T
2𝐗2𝐛 = ‖𝐗2𝐛‖ = ‖𝐬2‖ > 0.

(11)

That is, with a sufficiently strong signal, the prediction accuracy is expected to be positive.151

Red Team: null prediction152

In the above, we assumed that we have access to the true predictors 𝐗 and true weights 𝐛 unlike153

many real-world scenarios. Please note that the predictors in the current setting are not objectively154

observable conditions (e.g., the presence or absence of sounds) but a selected set of features of155

the stimulus that are hypothesized to be relevant to the neural responses by the researchers (e.g.,156

spectrotemporal modulation). In practice, while we clearly know which stimulus we presented,157

defining predictors requires knowledge of which information is encoded in the human brain, which158
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is ultimately unknown and often is the very aim of the study (e.g., “Is information X encoded in the159

brain region A or not?”).160

Now, let us consider an imaginary scenario where an independent group of researchers (“Red161

Team” as in adversarial testing) tries to demonstrate that our analysis method is vulnerable to any162

null predictors. That is, the red team wants to show that our analysis method can yield significant163

results even with random predictors, not only the predictors of our choice. They receive our data164

𝐲 only, but not predictors 𝐗. For simplicity, let us assume that we also inform the Red Team about165

the true delays. In this case, a reasonable course of action for the Red Team could be to generate166

a set of random vectors 𝐮𝑖 ∼  (𝟎, 𝜎𝐈) and to delay them to create a Toeplitz matrix 𝐔𝑖 ∈ ℝ𝑇 ×𝐹𝐷 to167

make their prediction for 𝐲2 as:168

𝐲̂2,𝐔 = 𝐔2𝐛̂0 = 𝐔2
(

𝐔T
1𝐔1 + ({𝐔1, 𝐲1}; {𝐔3, 𝐲3})

)−1 𝐔T
1𝐲1 = 𝐏𝐔𝐲1. (12)

Note that actual predictors that researchers would use based on theories, prior evidence, and169

intuitions should be much more informative than the Red Team’s random numbers. That is, 𝐔170

is expected to perform worse than any reasonable predictors. Put differently, if the Red Team171

somehow magically makes significant predictions using the null predictors 𝐔, it indicates there is172

something critically flawed in our analysis.173

Since we assume that the Red Team generates their null predictors 𝐔 independently from the174

true predictors 𝐗, a valid optimization process such as cross-validation (Hastie et al., 2009) should175

lead to a strong regularization of non-informative predictors (i.e., 𝐔). This simplifies the projection176

matrix to:177

𝐏𝐔 = 𝐔2
(

𝐔T
1𝐔1 + 𝜆∗𝐈

)−1 𝐔T
1

𝜆∗≫0
≈ 𝐔2(𝜆∗𝐈)−1𝐔T

1 =
1
𝜆∗

𝐔2𝐔T
1 . (13)

Thus, given the 𝐔𝑖, the expected value of the prediction accuracy over random noise is given as:178

𝔼
[

corr
(

𝐲̂2,𝐔, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐔𝐬2

(13)
≈ (𝐗1𝐛)T

( 1
𝜆∗

𝐔2𝐔T
1

)T
(𝐗2𝐛)

= 1
𝜆∗

𝐛T𝐗T
1𝐔1𝐔T

2𝐗2𝐛.

(14)

which converges to zero as 𝜆∗ approaches infinity:179

lim
𝜆∗→∞

𝔼
[

corr
(

𝐲̂2,𝐔, 𝐲2
)]

= 0. (15)

That is, the expected prediction accuracy of the Red Team is null.180

Repetition of stimulus181

So far, we assumed that the three partitions (i.e., training, optimization, and test sets) are indepen-182

dent of each other, with independent stimuli and independent noise, but only sharing the identical183

weights. However, presenting multiple repetitions of an identical, short stimulus—from tens to184

thousands of times—has been one of the most classical techniques in neuroscience to cancel out185

random noise in the data and reveal time-locked neural responses that are consistently evoked by186

the stimulus (e.g., event-related potential, time-locked BOLD response). More recently, for inves-187

tigating the representation of naturalistic stimuli, a design to present an identical set of stimuli to188
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multiple participants has been popularized in order to reveal stimulus-driven responses in terms189

of inter-subject correlation (Hasson et al., 2004) or to find a common functional coordinate via190

hyperalignment (Haxby et al., 2020).191

A problem occurs when the encoding analysis is naïvely applied to such data. To illustrate the192

point, let us consider an ideal design to reveal such a time-locked response, where the underlying193

signal is identical across partitions but the noise is independent: 𝐬1 = 𝐬2 = 𝐬3 but 𝐞1 ≠ 𝐞2 ≠ 𝐞3. Then,194

our projection matrix with 𝜆∗ ≈ 0 will be:195

𝐏𝐗 = 𝐗1
(

𝐗T
1𝐗1 + 𝐋∗)−1 𝐗T

1 ≈ 𝐗1
(

𝐗T
1𝐗1

)−1 𝐗T
1 , (16)

when 𝐗T
1𝐗1 is invertible. This simplifies the expected prediction accuracy to:196

𝔼
[

corr
(

𝐲̂2,𝐗, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐗𝐬1

(16)
≈ (𝐗1𝐛)T𝐗1

(

𝐗T
1𝐗1

)−1 𝐗T
1(𝐗1𝐛)

= 𝐛T𝐗T
1𝐗1

(

𝐗T
1𝐗1

)−1 𝐗T
1𝐗1𝐛

= 𝐛T𝐗T
1𝐗1𝐛 = ‖𝐬1‖ > 0.

(17)

Equivalently, Equation 17 being positive can be shown based on that the covariance matrix197

𝐗T
1𝐗1 is symmetric and that 𝐗1 is a rectangular matrix with independent columns, which means198

𝐗T
1𝐗1 is positive definite. By definition, 𝐛T𝐗T

1𝐗1𝐛 > 0 for 𝐛 ≠ 𝟎. This leads to a rather unsurprising199

conclusion—with a sufficiently strong signal, the expected prediction accuracy will be positive, also200

with the repeated signals3.201

In the case of the Red Team, however, a repeated strong signal (i.e., ‖𝐬1‖ = ‖𝐬2‖ = ‖𝐬3‖ ≫ 0), even202

unbeknownst to the Red Team, can alter the optimization process, disabling proper regularization203

(see Appendix 1). When unregularized (i.e., 𝐋∗ ≈ 𝟎), the projection matrix can be approximated as:204

𝐏𝐔 = 𝐔1
(

𝐔T
1𝐔1 + 𝐋∗)−1 𝐔T

1 ≈ 𝐔1
(

𝐔T
1𝐔1

)−1 𝐔T
1 , (18)

Thus, similarly to Equation 17, the expected null prediction accuracy of the Red Team can be ap-205

proximated as:206

𝔼
[

corr
(

𝐲̂2,𝐔, 𝐲2
)]

∝ 𝐬T1𝐏
T
𝐔𝐬1

(18)
≈ 𝐬T1𝐔1

(

𝐔T
1𝐔1

)−1 𝐔T
1𝐬1. (19)

𝐔T
1𝐔1 is positive definite due to its symmetry and independence of the columns in 𝐔1. Since207

the inverse operation preserves the signs of eigenvalues of a square matrix, its inversion
(

𝐔T
1𝐔1

)−1
208

is also positive definite. A substitution (𝐝 ≡ 𝐔T
1𝐬1 ≠ 𝟎) can clarify that Equation 19 is positive by209

definition:210

𝐬T1𝐏
T
𝐔𝐬1 ≈ 𝐝T

(

𝐔T
1𝐔1

)−1 𝐝 > 0. (20)

This may surprise some readers; however, Equation 20 implies that the null prediction of the211

Red Team is expected to be greater than zero. Depending on the signal-to-noise ratio, this may212

result in Type-I (false positive) errors. This is due to the circular fallacy introduced by the leakage in213

training examples, i.e., RDD.214

In short, the mechanism of RDD can be summarized in the following steps:215

3Notablly, here the expected prediction accuracy is proportional to the square of the signal in the training set, rather than the
test set (Equation 9). This may affect generalization performance in hold-out validation (where the performance is evaluated
only once on a separate test set), but in cross-validation the performancewill be averaged out across sets. Eitherway, repetition
of stimulus across sets leads to a spurious inflation of performance estimation.
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1. The repeated signal disables the regularization of a seemingly valid optimization process even216

with independent noise.217

2. As the regularization hyperparameter approaches zero, the projection matrix becomes posi-218

tive definite, which was null when properly regularized.219

3. Because of the repeated signal, the expected prediction accuracy over random noise is pro-220

portional to a bilinear form involving a nonzero vector and a positive-definite square matrix,221

i.e., 𝐝T𝐌𝐝 > 0.222

Toy example223

For a graphical illustration, a simple case of small-scale simulation (i.e., a toy example) is shown224

in Figure 2 and Figure 3. See Simulation methods for details of how the simulations were created.225

In this example, two features with a high temporal autocorrelation were generated without repe-226

titions (Figure 2a) and with repetitions (Figure 3a). The Red Team created their own null features227

(Figure 2m). Thus, all coefficients were highly regularized for the Red Team (Figure 2r; pink). Conse-228

quently, the Red Team’s predictions weremostly flat (Figure 2o,p; dotted lines) and expectedly, the229

Red Team’s prediction accuracies were around 𝑟 = 0 (Figure 2l; pink). However, with the stimulus230

repeated across sets (i.e., identical signals in the training and test sets), the regularization for the231

Red Team was much smaller, almost close to the true features (Figure 3r; pink vs. lime green) and232

the Red Team’s prediction accuracies were around 𝑟 = 0.5 (Figure 3l; pink). That is, due to the rep-233

etition of the stimulus, even with independent noise (Figure 3e,k), the prediction accuracies based234

on the null features were falsely inflated.235

Having shown how RDD could occur, it is important to note that multiple assumptions were236

made to arrive here. In practice, various factors—such as signal strength, temporal and spatial237

correlation structures, feature collinearity, similarity across partitions, and the flexibility of the FIR238

model—might interact to inflate Type-I errors.239

Simulation240

In this section, I highlight major factors that worsen the Type-I error due to RDD. To keep the num-241

ber of combinations manageable, univariate models (𝐹 = 1, 𝑉 = 1) were first considered. Then,242

while iteratively pruning out irrelevant factors, models with multivariate features (𝐹 ) and multivari-243

ate responses (𝑉 ) were considered. Methodological details of the simulation are described in the244

Simulation methods section. The parameters of simulation are summarized in Table 2.245

Univariate-feature, univariate-response246

The first batch of simulations was restricted to a univariate feature (the number of features 𝐹 = 1)247

and a univariate response (the number of variates 𝑉 = 1). The explored parameter levels were:248

𝐷 ∈ {1, 3, 5, 7, 9, 11}, 𝑆 ∈ {−10, 0, 10}, 𝜙𝑋 ∈ {0, 0.5, 1}, 𝜙𝑈 ∈ {0, 0.5, 1}, 𝜙𝐸 ∈ {0, 0.5, 1}, 𝜙𝐵 ∈ {0, 0.5, 1},249

IsRep ∈ {0, 1}. With these parameter levels, total 2,916 combinations were created, each sampled250

1,000 times.251

To illustrate the most distinctive effects, prediction accuracies averaged across 1,000 random252

sampling are shown in Figure 4. Expectedly, the SNR increased the prediction accuracy based on253
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Figure 2. A toy example without stimulus repetition. Apart from the right-most panels in pale beige (f, l, r), the panels in the first row (a–e)
correspond to the training set with the true features 𝐗1, the panels in the second row (g–k) correspond to the test set with the true features 𝐗2,
and the panels in the third row (m–p) correspond to the Red Team’s null features 𝐔2. The panels in the first column (a, g, m) show the true
features 𝐱 or null features 𝐮 in gray scale. The panels in the second column show the true weights 𝐛 (b) or estimation based on the true features
(h) or null features (n) where the RGB color represents one of three response variates. The panels in the third column (c, i, o) show the
response 𝐲 (solid lines) and prediction based on true or null features 𝐲-hat (dashed lines), and the panels in fourth column (d, j, p) show the true
signal 𝐬 (solid lines) and the prediction (dashed lines). The two panels in the fifth column (e, k) show true noise 𝐞. In the pale beige panels (f, l, q,
r), distributions from 200 simulations are shown in ridgeline plots with the 95% confidence interval of the mean shown in white strips: (f)mean
absolute error (MAE) of weight estimation based on the true features (𝐗; lime green) or null features (𝐔; pink), (l) prediction accuracies in
Pearson’s correlation coefficients with a black vertical line for an absolute zero, a gray vertical line for an uncorrected 𝑃 < 0.05 (assuming
independent time points), and a red vertical line for a Bonferroni-corrected 𝑃 < 0.05 adjusted for the number of variates. (q) inter-trial
correlation (ITC) of the responses (brown), (r) exponents of the geometrically averaged optimal 𝜆’s. Parameters to generate this simulation set
are: 𝑇 = 100, 𝑉 = 3, 𝐹 = 2, 𝐷 = 3, 𝑆 = 1dB, 𝜙𝑋 = 1, 𝜌𝑋 = 0, 𝜙𝐵 = 1, 𝜃 = 0, 𝜙𝐸 = 1, 𝜃𝐸 = 0, IsRep = 0. See Table 2 for the explanation of parameters.
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Figure 3. A toy example with stimulus repetition. The visualization scheme is identical to Figure 2. Parameters to generate this simulation set
are identical to those in Figure 2, except IsRep = 1.
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Figure 4. Simulations of univariate-feature, univariate-response models. Mean prediction accuracies are
plotted over the number of delays 𝐷 when the temporal autocorrelation (a) 𝜙𝑈 = 0 and (b) 𝜙𝑈 = 1. Each
marker corresponds to the averaged Pearson correlation coefficients of 1000 simulations. Predictions based
on true features (𝐗) are shown in lime green and null features (𝐔) in pink. Open circles with solid lines indicate
accuracies when the true signals were not repeated. Crosses with dashed lines represent cases where the
true signals were repeated. Each column corresponds to a specified SNR level. 𝜙𝑋 = 0 in the top row and
𝜙𝑋 = 1 in the bottom row. Other parameters were as follows: 𝐾 = 1000, 𝜙𝐵 = 0, 𝜙𝐸 = 0. Other combinations of
parameters showed generally similar patterns. See Table 3 and Table 4 for effect sizes.

the true features (green markers). The prediction based on the null features remained zero when254

the stimuli were independent across the cross-validation (CV) partitions (pink circles). However,255

when the stimuli were identical across the partitions, the null prediction accuracy increased over256

the number of delays and the SNR (pink crosses). In particular, the effect of temporal autocorrela-257

tion 𝜙𝑋 when 𝜙𝑈 = 1 substantially increased the null prediction with the repeated stimuli.258

To comprehensively assess the possible effects, a full factorial model on mean prediction accu-259

racies was fitted with all seven variables as in Wilkinson notation:260

𝑟 ∼ 1 +𝐷 ∗ 𝑆 ∗ 𝜙𝑋 ∗ 𝜙𝑈 ∗ 𝜙𝐸 ∗ 𝜙𝐵 ∗ IsRep, (21)

where 𝑟 is themean prediction accuracy averaged for each set of 1000 simulations either based on261

true or null predictors, 1 represents an intercept, and ∗denotes factor crossing as in 𝑎 ∗ 𝑏 = 𝑎+𝑏+𝑎 ∶262

𝑏with ∶ denoting an interaction. This yielded linearmodels with 128 terms from the intercept to the263

seven-way interaction, 2,916 observations, and adjusted𝑅2 = 0.985 for 𝐗 and 0.957 for 𝐔, which are264

reasonable given that the accuracy metrics are averaged within each combination of parameters.265

Due to the large number of observations, 𝑃 -values were not highly selective (𝑃Bonferroni < 0.0001 for266

many of contrasts; 9 for 𝐗, 27 for 𝐔 out of 127). Thus, on top of 𝑃Bonferroni < 0.0001, only effects with267

moderate effect sizes (𝜂2𝑝 ≥ 0.16) were considered for further discussion (Table 3, Table 4).268

As expected, the SNR consistently increased the prediction accuracy (𝜂2𝑝 [𝑆] = 0.985 for𝐗; 𝜂2𝑝 [𝑆] =269

0.660 for 𝐔). Most importantly, the interaction of the stimulus repetition (IsRep) with the signal270

strength (SNR, 𝑆), and the autocorrelation of the true and null features (𝜙𝑋 , 𝜙𝑈 ) were markedly271

found on the prediction accuracy based on the null features (max 𝜂2𝑝 = 0.661, Table 4). Put differently,272

the RDD effect (i.e., a false inflation of the null prediction accuracy by the repetition of stimulus273
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across CV partitions) was most pronounced when the true underlying signal was strong and the274

true features were temporally autocorrelated. This finding is consistent with Equation 17 above,275

showing that the RDD effect depends on the nonzero strength of the underlying signal. The clearer276

the signal, the more likely the RDD effect will occur when analyzed in a circular CV design.277

In addition, the RDD effect strongly interacted with the complexity of the underlying (and fitted)278

models (i.e., IsRep ∶ 𝐷; Table 4). While in a correct CV design (IsRep = 0), the model complexity279

did not increase the prediction accuracy as this was regularized by independent optimization and280

evaluation. However, in a circular CV design (IsRep = 1), the model complexity increased the pre-281

diction accuracy (hence the RDD effect) since the model was fitted to the identical signal across CV282

partitions. Naturally, this effect further interacted with the strength of the signal (IsRep ∶ 𝐷 ∶ 𝑆;283

Table 4).284

The effect of the autocorrelation of the weight time series 𝜙𝐵 was found to be negligible for285

both 𝐗 and 𝐔 (𝜂2𝑝 < 0.009). Guided by these results, we fixed the autocorrelation of the weight time286

series to zero (𝜙𝐵 = 0) in the following simulations.287

Multivariate-feature, univariate-response288

Since most often we are interested in multivariate features (e.g., motion energies, spectrograms,289

deep ANN embeddings), it is of interest how the dimensionality and multicollinearity of features290

influence RDD artifact.291

The explored parameter levels were: 𝐷 ∈ {1, 5, 9}, 𝐹 ∈ {5, 10, 15, 20}, 𝑆 ∈ {−10, 0, 10}, 𝜙𝑋 ∈292

{0, 0.5, 1}, 𝜙𝑈 ∈ {0, 0.5, 1}, 𝜙𝐸 ∈ {0, 0.5, 1}, 𝜙𝐵 = 0, 𝜌𝑋 ∈ {0, 0.5, 1}, 𝜌𝑈 ∈ {0, 0.5, 1}, IsRep ∈ {0, 1}.293

With these levels, the full combinations amounted to 17,496, for each of which, once more, 1,000294

random samplings were carried out.295

Figure 5 displays the simulated effects. The number of features 𝐹 reduced the truemodels’ pre-296

diction accuracies without repetitions (green solid lines), andmore sowithmore complex response297

functions (e.g.,𝐷 = 9). In contrast, increasing the number of features led to higher prediction accu-298

racies in null models with stimulus repetition (pink dashed lines). Moreover, at a higher SNR (e.g.,299

10 dB), the null prediction accuracies (pink dashed lines) were even higher than the true predic-300

tion accuracies (green solid lines) with many independent predictors (e.g., 9 delays × ≥15 features301

when 𝜌𝑋 = 0; Figure 5a). This suggests that, in a bad combination, the null prediction accuracy can302

go beyond the noise ceiling (i.e., green solid lines; assuming we know the true predictors), which303

is the plausibly highest prediction accuracy bounded by the noise level of the signal. This crossing304

of the true and null prediction accuracies was attenuated when features were highly correlated305

(𝜌𝑋 = 1; Figure 5b), which reduced the effective degrees of freedom.306

To quantify the observed effects, once again, a full factorial model on mean prediction accura-307

cies was fitted with all nine variables:308

𝑟 ∼ 1 +𝐷 ∗ 𝐹 ∗ 𝑆 ∗ 𝜙𝑋 ∗ 𝜙𝑈 ∗ 𝜙𝐸 ∗ 𝜌𝑋 ∗ 𝜌𝑈 ∗ IsRep. (22)

A full factorial model with 17,496 observations and 511 terms resulted in adjusted 𝑅2 = 0.975309

for 𝐗 and 0.923 for 𝐔 (Table 5, Table 6). A strong effect of the number of features 𝐹 was found for310

𝐗 (𝜂2𝑝 = 0.276) but only an intermediate effect for 𝐔 (𝜂2𝑝 = 0.102). Additionally, its interaction with311
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Figure 5. Simulations of multivariate-feature, univariate-response models. Mean prediction accuracies are
plotted over the number of features 𝐹 when the multicolinearity (a) 𝜌𝑋 = 0 and (b) 𝜌𝑋 = 1. Marker styles and
colors match to those in Figure 4. Each column represents a specified SNR level. The number of delays is
𝐷 = 1 in the top rows and 𝐷 = 9 in the bottom rows. Other parameters were as follows: 𝐾 = 1000, 𝜙𝑈 = 0,
𝜙𝐵 = 0, 𝜙𝐸 = 0, 𝜌𝑈 = 0. See Table 5 and Table 6 for effect sizes.

Figure 5—figure supplement 1. Additional cases with 𝜌𝑈 = 0 and 𝜌𝑈 = 1 when 𝜌𝑋 = 0

stimulus repetition (IsRep) for the null features was only intermediate 𝐔 (𝜂2𝑝 = 0.101), suggesting312

the dimension of the features alone was not a strong factor for the RDD effect.313

However, the interaction between the stimulus repetition and the multicollinearity of the null314

features (𝜌𝑈 ∶ IsRep) was strong (𝜂2𝑝 = 0.442; Table 6), where the RDD effect was more pronounced315

when the null features exhibited lower autocorrelation (Figure 5—figure Supplement 1). That is,316

when the null features have greater effective degrees of freedom (i.e., lower autocorrelation), the317

model could more flexibly fit the repeated signal, inflating the RDD effect.318

In addition, an interesting finding was that the true prediction accuracy decreased as the num-319

ber of features 𝐹 and the number of delays 𝐷 increased. This was due to the limited number320

of samples (𝑇 = 100) as compared to the high dimensionality of the feature space, which made321

the linear model ill-posed. While regularization makes fitting feasible, the inherent limitation exist.322

Put differently, these results suggest that a sufficient number of samples is required to faithfully323

estimate the transfer function of the high-dimensional feature space.324

Multivariate-feature, multivariate-response325

Finally, it was testedwhether the dimensionality and spatial autocorrelation of responses (variates)326

affect the RDD artifact. First, it is worth noting that the encoding model is typically a univariate-327

response model (e.g., “voxel-wise” or “channel-wise”). The assumption of spatially (i.e., across re-328

sponse units) independent noise is similar to that of the classical general linear model (Friston329

et al., 1994), where a diagonal covariance structure across lattice sampling grids (e.g., voxels) is330

assumed4. Likewise, the encoding model is independently optimized for each response unit in the331

4Therefore, the term ‘massive-univariate’ would be more fitting than ‘multivariate’.
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Figure 6. Schema of two cross-validation designs. For simplicity, let us say we have three subjects {1, 2, 3}
(depicted in red, green, blue) and two stimuli {𝑎, 𝑏} (depicted as a cube and a tetrahedron). Note that we
assume any repetitions of stimuli within a subject are averaged prior to the cross-validation. (a) IsRep=0.
Subject-specific models (pale colored circles). Each model (e.g., pale red circle in solid rectangle) is trained
with one stimulus (dashed rectangle) and tested on another stimulus (dotted rectangle). (b) IsRep=1.
Stimulus-specific models (gray square and triangle). Each model (e.g., gray square in sold rectangle) is trained
with two subjects (dashed rectangle) and tested on the other subject (dotted rectangle). The optimization set,
which could be in the training set of the outer loop, is not marked for simplicity.

current paper5. Thus, while the spatial dependency may affect the family-wise error rates of mul-332

tilpe testing (since many correction methods exploit neighbouring supports), it is unexpected that333

the spatial dependency directly alters the unit-wise optimization and following weight estimation.334

However, for completeness, simulations were carried out with following parameters: 𝐷 ∈ {1, 7, 11},335

𝐹 ∈ {5, 10, 20}, 𝑉 ∈ {5, 10, 20}, 𝑆 ∈ {−10, 0, 10}, 𝜙𝑋 ∈ {0, 0.5, 1}, 𝜙𝑈 ∈ {0, 0.5, 1}, 𝜙𝐸 ∈ {0, 0.5, 1},336

𝜙𝐵 = 0, 𝜃𝐵 ∈ {0, 0.5, 1}, 𝜃𝐸 ∈ {0, 0.5, 1}, 𝜌𝑋 ∈ {0, 0.5, 1}, 𝜌𝑈 ∈ {0, 0.5, 1}, IsRep ∈ {0, 1}. With these337

parameter levels, there were 354,287 total combinations, as before, each sampled 1,000 times. A338

full factorial model, incorporating all twelve variables, was fitted using 354,287 observations and339

4,096 terms. As expected, the spatial dependency 𝜃𝐵 and 𝜃𝐸 neither showed any marked main340

effects nor interactions (𝜂2𝑝 < 0.160; Table 7, Table 8).341

Real Data342

In this section, I present real-data examples where RDD spuriously inflated null prediction accura-343

cies using open-access data where healthy participants listened to various musical excerpts while344

measuring neural activity (electroencephalography [EEG] or functional magnetic resonance imag-345

ing [fMRI]) or behavioral ratings (Kaneshiro et al., 2020; Sachs et al., 2020).346

Based on the well-established encoding of the acoustic energy in the human auditory system,347

true features were the audio envelopes extracted from the musical stimuli using a cochlear model348

(Chi et al., 2005). Null features were either (a) the phase-randomized envelope (preserving spectral349

magnitudes and autocorrelation structures) as the most realistic one, (b) the normal noise, and (c)350

the uniform noise as the least realistic one. Details of the real data and analysis implementation351

are provided in the Materials and Methods section.352

Importantly, the datawere analyzedwith two competing cross-validation (CV) designs (Figure 6):353

5In some EEG studies, hyperparameters were averaged across response units (i.e., EEG channels). This practice introduces
spatial dependency that leads to a suboptimal regularization for individual response units.
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1. IsRep = 0: No stimulus was repeated across CV sets (training, optimization, and test). That is,354

subject-specific models were fit with stimuli assigned to CV sets.355

2. IsRep = 1: Identical stimuli, albeit with different noise realizations, were repeated in all three356

sets. Thus, stimulus-specific models were fit with participants partitioned into CV sets.357

The magnitude of RDD artifact was estimated as the difference in null prediction accuracies358

between two CV schemes: RDD = 𝑟̄stim(𝐔; IsRep = 1) − 𝑟̄subj(𝐔; IsRep = 0) where 𝑟stim is a predic-359

tion accuracy of a stimulus-specific model and 𝑟subj is that of a subject-specific model. ̄(⋅)) denotes360

averaging across null models (𝑀 = 100). That is, if there were no false inflation of prediction accu-361

racy due to RDD, the null predictions with and without stimulus repetitions should be equal (i.e.,362

0 ∶ 𝔼(RDD) = 0). Otherwise, the null prediction with stimulus repetitions is expected to be greater363

than the null prediction without repetitions (𝐴 ∶ 𝔼(RDD) > 0).364

All data analyses were consistently done using an MATLAB package Linearized Encoding Analy-365

sis (LEA; https://github.com/seunggookim/lea).366

Electroencephalography367

Scalp electrical potential data were recorded in 48 healthy participants while listening to Western-368

style Indian pop music (i.e., Bollywood music; Kaneshiro et al., 2020). Using this EEG dataset, lin-369

earized encoding analysis was performed with the audio envelope as a true feature and its phase-370

randomized signals as null features.371

Without stimulus repetition (IsRep = 0), a clear fronto-central topography is shown in the predic-372

tion accuracy (max 𝑟(𝑋; 0) = 0.047, Figure 7a) aswell as in the ridge hyperparameter (min log10 𝜆(𝑋; 0) =373

5.86, Figure 7b), reflecting the envelope encoding in the bilateral auditory cortices while listening374

to music. For this particular data, the estimated weights were stronger in the left that right fronto-375

central channels (Figure 7c). With the phase-randomized envelope, as expected, the null predic-376

tion accuracy was minimal (max 𝑟(𝑈 ; 0) = 0.006, Figure 7d; max𝔼 [𝑟(𝑈 ; 0)] = 0.001, Figure 7g) with377

all channels were highly regularized (min log10 𝜆(𝑈 ; 0) = 10.98, Figure 7e; min𝔼
[

log10 𝜆(𝑈 ; 0)
]

= 12.11,378

Figure 7h).379

With stimulus repetition (IsRep = 1), true prediction accuracies were increased (max 𝑟(𝑋; 1) =380

0.085, Figure 7j). This is because, unlike the simulation, our feature (i.e., the audio envelope) was381

not the sole information that the human EEG data encode.382

However, most strikingly, the null prediction accuracies with stimulus repetition showed an al-383

most identical topography to the actual encoding results (Figure 7m,p), with even higher values384

than the true prediction without repetition (max 𝑟(𝑋; 0) = 0.047, max 𝑟(𝑈 ; 1) = 0.052, max𝔼 [𝑟(𝑈 ; 1)] =385

0.056). Note that, by definition, the null feature (phase-randomized envelopes) should have not386

predicted anything in the EEG data. However, when the identical stimuli were repeated over CV387

partitions, the regularization was disabled—regardless of the given features—in channels where388

the stimulus-evoked response is strong (Figure 7n,q). Then, even randomweights (Figure 7o,r; Fig-389

ure 7—figure Supplement 9; i.e., widely different from the true weights) could successfully predict390

the repeated signal. Because RDD artifact reflects the genuine biological signal that is repeatedly391

evoked by identical stimuli, the observed patterns of the prediction accuracy may appear indis-392

tinguishable from the true signal without close investigation of weights. This pattern of RDD was393
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observed, albeit weaker, even when the null features were unrealistic such as normal noise (Fig-394

ure 7—figure Supplement 1) or uniform (Figure 7—figure Supplement 2). Moreover, the RDD effect395

was consistent across different sets of delays (Figure 7—figure Supplement 3, Figure 7—figure396

Supplement 4, Figure 7—figure Supplement 5, Figure 7—figure Supplement 6, Figure 7—figure397

Supplement 7, Figure 7—figure Supplement 8).398

Transfer function weights showed interesting patterns (Figure 7—figure Supplement 9, Fig-399

ure 7—figure Supplement 10, Figure 7—figure Supplement 11). Spatially, the eigenvectors ex-400

plaining the largest variance (i.e., PC1) of the phase-randomized envelope were similar to those of401

the true envelope while the eigenvectors of the uniform or normal noise without autocorrelation402

showed rather noisy (spatially high frequencies) patterns. Temporally, even though the uniform403

or normal noise features had no autocorrelation, the eigenvariate time series showed smooth pat-404

terns, reflecting the autocorrelation of the EEG data.405

When comparing the null prediction accuracies between the CV schemes (e.g., Figure 7g vs.406

Figure 7p), the RDD effects were found significant in all channels and displayed a fronto-central407

topography that is highly plausible for the auditory cortical activity (𝑃𝐹𝐷𝑅 < 0.01; Figure 8). It is408

noteworthy that the RDD effect is much stronger for the phase-randomized envelope, which pre-409

serves the autocorrelation structure of the stimulus. Also, the number of delays seems to further410

inflate the RDD effect as demonstrated in the simulation results (e.g., Figure 4).411

Functional magnetic resonance imaging412

Blood-oxygen-level-dependent (BOLD) datawere acquired in 39 healthy participantswhile listening413

to Western instrumental musical pieces that either evoke happiness or sadness as validated in414

independent listeners (Sachs et al., 2020). As done for the EEGdataset, linearized encoding analysis415

was performed with the fMRI data as responses, the audio envelope as a true feature, the phase-416

randomized envelope as a null feature, and delays from 3 to 9 seconds (Figure 9). Similarly to417

the EEG results, the phase-randomized envelope strikingly predicted the BOLD time series in the418

bilateral auditory cortices including the Heschl’s gyrus and planum temporale (Figure 9m,p) while419

no consistent pattern in the transfer function weights was found over the phase randomizations420

(Figure 9r), clearly demonstrating the RDD effect. Once again, the anatomical location and the421

extent of the heightened null prediction accuracies precisely matched the true encoding results422

(Figure 9a,j), which would seem ‘highly convincing’ to many human neuroscientists.423

When analyzed with different noise models and delays ( Figure 9—figure Supplement 1, Fig-424

ure 9—figure Supplement 2, Figure 9—figure Supplement 3, Figure 9—figure Supplement 4, Fig-425

ure 9—figure Supplement 5, Figure 9—figure Supplement 6, Figure 9—figure Supplement 7, Fig-426

ure 9—figure Supplement 8), the similar RDD pattern was consistently observed (i.e., inflated pre-427

diction accuracies in the auditory cortices). The RDD effect was statistically significant in not only428

the bilateral superior temporal gyri but themedial occipital cortices and the inferior frontal cortices,429

where acoustic energy is not expected to be encoded (Figure 10). Consistently with the EEG results,430

the RDD effect was stronger for the phase-randomized envelope than the normal or uniform noise431

as well as for longer delay points than shorter ones.432

The transfer function weights (Figure 9—figure Supplement 9, Figure 9—figure Supplement 10,433
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Figure 7. EEG linearized encoding analysis results with delays from 0 to 0.5 sec with an audio envelope (top row, (a-c, j-l)), a single case of a
phase-randomized envelope (middle row, (d-f, m-o)), and an average of 100 phase-randomized envelopes (bottom row, circled in pale yellow,
(g-i, p-r)). For each CV scheme (IsRep = 0, left panels, (a-i); IsRep = 1, right panels, (j-r)), prediction accuracy (𝑟, blue to red, (a, d, g, j, m, p)),
logarithmic ridge hyperparameter (log10 𝜆, gray to white, (b, e, h, k, n, q)), transfer function weights that are summed over delays (𝑏, blue to
green, (c, f, i, l, o, r)) are shown along the columns. Note that stimulus repetition not only slightly inflated true prediction accuracies but even
the predicted ‘brain activity pattern’ from null features (m,p) which was literally indistinguishable from true predictions (a, j).

Figure 7—figure supplement 1. EEG linearized encoding analysis with normal noise and delays from 0 to 0.5 sec

Figure 7—figure supplement 2. EEG linearized encoding analysis with uniform noise and delays from 0 to 0.5 sec

Figure 7—figure supplement 3. EEG linearized encoding analysis with the phase-randomized envelope and delays from 0 to 0.3 sec

Figure 7—figure supplement 4. EEG linearized encoding analysis with normal noise and delays from 0 to 0.3 sec

Figure 7—figure supplement 5. EEG linearized encoding analysis with uniform noise and delays from 0 to 0.3 sec

Figure 7—figure supplement 6. EEG linearized encoding analysis with the phase-randomized envelope and delays from 0 to 1 sec

Figure 7—figure supplement 7. EEG linearized encoding analysis with normal noise and delays from 0 to 1 sec

Figure 7—figure supplement 8. EEG linearized encoding analysis with uniform noise and delays from 0 to 1 sec

Figure 7—figure supplement 9. EEG transfer function weights with all three noise models and delays from 0 to 0.5 sec

Figure 7—figure supplement 10. EEG transfer function weights with all three noise models and delays from 0 to 0.3 sec

Figure 7—figure supplement 11. EEG transfer function weights with all three noise models and delays from 0 to 1 sec
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Figure 8. 𝑡-statistic maps comparing the null prediction accuracies between two CV schemes (e.g., Figure 7g
vs. Figure 7p) to test the RDD effects in the EEG data for the phase-randomized envelope (top row), the
normal noise (middle row), and the uniform noise (bottom row). All channels were found significant after FDR
adjustment in all cases (𝑃𝐹𝐷𝑅 < 0.01).
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Figure 9—figure Supplement 11) display strong “auditory components” even for normal and uni-434

form noise in their eigenvectors while the corresponding eigenvariates were widely different from435

the weights estimated by the true feature.436

Behavioral ratings437

Continuous ratings of music-evoked emotions were sampled from the same 39 healthy partici-438

pants who took part in the fMRI experiment above (Sachs et al., 2020). After the scanning session,439

participants listened to the samemusical pieces again and rated their Emotionality (howhappy/sad440

they felt) and Enjoyment (how much they enjoyed the piece) using a slider. A linearized encoding441

analysis was performed with the ratings as responses, the audio envelope as a true feature, the442

phase-randomized envelope as a null feature, and delays from 0 to 10 seconds (Figure 11). Once443

more, while the true envelope predicted Emotionality to some degrees and Enjoyment to a greater444

extent (Figure 11a), the phase-randomized envelope also predicted both scales well above zero445

when the stimuli were repeated across CV partitions (Figure 11m,p) unlike when the stimuli were446

not repeated (Figure 11g).447

The RDD effect was significant also in the behavioral ratings consistently across all noise mod-448

els and delays (Figure 12; Figure 11—figure Supplement 1, Figure 11—figure Supplement 2, Fig-449

ure 11—figure Supplement 3, Figure 11—figure Supplement 4, Figure 11—figure Supplement 5,450

Figure 11—figure Supplement 6, Figure 11—figure Supplement 7, Figure 11—figure Supplement 8).451

Similarly to other modalities, the transfer function weights reflected the inherent autocorrelation452

structure of the behavioral data (Figure 11—figure Supplement 9, Figure 11—figure Supplement 10,453

Figure 11—figure Supplement 11).454

Discussion455

Theprimary objective of cognitive neuroscience is to comprehendhow thebrain executes information-456

processing operations (Kay, 2018). Linearized encoding analysis serves as a robust method to eval-457

uate a model (i.e., transfer function) that describes how the brain encodes sensory information458

from the environment and processes this information further (Naselaris et al., 2011). Prediction459

accuracy is crucial as it measures the model’s ability to generalize to unseen stimulus-response460

pairs. This paper elucidates how information leakage in training examples (i.e., RDD) can artifi-461

cially inflate prediction accuracy and demonstrates this through extensive simulations and real462

data analyses.463

Firstly, it was mathematically shown that the expected prediction accuracy of the null feature464

could exceed zerowhen thenull features are identically repeated across CVpartitions (Equation 20).465

It is important to understand that RDD arises not from noise in the data but from the stimulus-466

driven similarity. In particular, the similarity between training and optimization sets disables regu-467

larization leading to an inflation of the null prediction accuracy.468

Secondly, simulations showed that the RDD effect (i.e., the inflation of the prediction accuracy469

due to RDD; an interaction with IsRep) is more pronounced with a higher signal-to-noise ratio,470

greater flexibility (i.e., longer delay points or higher dimensional features), and more similar auto-471

correlation structures between the true and null features (Table 4; Table 6).472
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Figure 9. fMRI linearized encoding analysis results with delays from 3 to 9 sec with the audio envelope (top row, (a-c, j-l)), a single case of a
phase-randomized envelope (middle row, (d-f, m-o)), and an average of 100 phase-randomized envelopes (bottom row, pale yellow background,
(g-i, p-r)). For each CV scheme (IsRep = 0, left panels, (a-i); IsRep = 1, right panels, (j-r)), prediction accuracy (𝑟, blue to red, (a, d, g, j, m, p)),
logarithmic ridge hyperparameter (log10 𝜆, gray to white, (b, e, h, k, n, q)), transfer function weights that are summed over delays (𝑏, blue to
green, (c, f, i, l, o, r)) are shown along the columns. The analysis was done in the 3-D space, but transverse slices (Montreal Neurological
Institute [MNI]-coordinate Z = 8 mm) are chosen to display anatomical structures implicated in a meta-analysis on music-evoked emotions
(Koelsch, 2020) such as the Heschl’s gyrus, planum tempolare, the inferior frontal cortex. The 3-D volumes can be viewed with the NeuroVault
web viewer (https://identifiers.org/neurovault.collection:19626).

Figure 9—figure supplement 1. fMRI linearized encoding analysis with normal noise as null features and delays from 3 to 9 sec

Figure 9—figure supplement 2. fMRI linearized encoding analysis with uniform noise as null features and delays from 3 to 9 sec

Figure 9—figure supplement 3. fMRI linearized encoding analysis with the phase-randomized envelope and delays from 4 to 6 sec

Figure 9—figure supplement 4. fMRI linearized encoding analysis with normal noise as null features and delays from 4 to 6 sec

Figure 9—figure supplement 5. fMRI linearized encoding analysis with uniform noise as null features and delays from 4 to 6 sec

Figure 9—figure supplement 6. fMRI linearized encoding analysis with the phase-randomized envelope and delays from 0 to 12 sec

Figure 9—figure supplement 7. fMRI linearized encoding analysis with normal noise as null features and delays from 0 to 12 sec

Figure 9—figure supplement 8. fMRI linearized encoding analysis with uniform noise as null features and delays from 0 to 12 sec

Figure 9—figure supplement 9. fMRI transfer function weights with all three noise models and delays from 3 to 9 sec

Figure 9—figure supplement 10. fMRI transfer function weights with all three noise models and delays from 4 to 6 sec

Figure 9—figure supplement 11. fMRI transfer function weights with all three noise models and delays from 0 to 12 sec
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Figure 10. 𝑡-statistic maps on the transverse slices comparing the null prediction accuracies between two CV
schemes (e.g., Figure 9g vs. Figure 7p) to test the RDD effects in the fMRI data with the phase-randomized
envelope (top row), the normal noise (middle row), and the uniform noise (bottom row). Voxels were
thresholded by statistical significance after FDR adjustment (𝑃𝐹𝐷𝑅 < 0.01). The background anatomical image
is the MNI template included in FSL (MNI152_T1_2mm_brain.nii.gz). The 3-D volumes can be viewed with the
NeuroVault web viewer (https://identifiers.org/neurovault.collection:19626).
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Figure 11. Behavioral linearized encoding analysis results with delays from 0 to 10 sec with an audio envelope (top row, (a-c, j-l)), a single case
of the phase-randomized envelope (middle row, (d-f, m-o)), and an average of 100 phase-randomized envelopes (bottom row, pale yellow
background, (g-i, p-r)). For each CV scheme (IsRep = 0, left panels, (a-i); IsRep = 1, right panels, (j-r)), prediction accuracy (𝑟, red bars, (a, d, g, j,
m, p)), logarithmic ridge hyperparameter (log10 𝜆, gray bars, (b, e, h, k, n, q)), transfer function weights that are summed over delays (𝑏, blue
bars, (c, f, i, l, o, r)) are shown along the columns. For the averaged metrics (bottom row), the standard deviations are shown as error bars.
Emo.: emotionality, Enj.: enjoyment.

Figure 11—figure supplement 1. Behavioral linearized encoding analysis with the normal noise and delays from 0 to 10 sec

Figure 11—figure supplement 2. Behavioral linearized encoding analysis with the uniform noise and delays from 0 to 10 sec

Figure 11—figure supplement 3. Behavioral linearized encoding analysis with the phase-randomized envelope and delays from 0 to 5 sec

Figure 11—figure supplement 4. Behavioral linearized encoding analysis with the normal noise and delays from 0 to 5 sec

Figure 11—figure supplement 5. Behavioral linearized encoding analysis with the uniform noise and delays from 0 to 5 sec

Figure 11—figure supplement 6. Behavioral linearized encoding analysis with the phase-randomized envelope and delays from 0 to 15 sec

Figure 11—figure supplement 7. Behavioral linearized encoding analysis with the normal noise and delays from 0 to 15 sec

Figure 11—figure supplement 8. Behavioral linearized encoding analysis with the uniform noise and delays from 0 to 15 sec

Figure 11—figure supplement 9. Behavioral transfer function weights with all three noise models and delays from 0 to 10 sec

Figure 11—figure supplement 10. Behavioral transfer function weights with all three noise models and delays from 0 to 5 sec

Figure 11—figure supplement 11. Behavioral transfer function weights with all three noise models and delays from 0 to 15 sec

22 of 75



phase: 0 sec-5 sec

emo enj
0

10

20

t-
st

at

phase: 0 sec-10 sec

emo enj
0

10

20

t-
st

at

phase: 0 sec-15 sec

emo enj
0

10

20

t-
st

at

normal: 0 sec-5 sec

emo enj
0

10

20

t-
st

at

normal: 0 sec-10 sec

emo enj
0

10

20

t-
st

at

normal: 0 sec-15 sec

emo enj
0

10

20

t-
st

at

uniform: 0 sec-5 sec

emo enj
0

10

20

t-
st

at

uniform: 0 sec-10 sec

emo enj
0

10

20

t-
st

at

uniform: 0 sec-15 sec

emo enj
0

10

20

t-
st

at

Figure 12. 𝑡-statistic bar plots comparing the null prediction accuracies between two CV schemes (e.g.,
Figure 11g vs. Figure 7p) to test the RDD effects in the behavioral data with the phase-randomzied envelope
(top row), the normal noise (middle row), and the uniform noise (bottom row). All effects were statistical
significant after FDR adjustment (𝑃𝐹𝐷𝑅 < 0.01). Emo.: emotionality, Enj.: enjoyment.

Lastly, the RDD effect was consistently observed across popular data modalities in cognitive473

neuroscience (Figure 8, Figure 10, Figure 12). In particular, the inflated prediction accuracy exhib-474

ited highly plausible spatial patterns even when predicted by uniform noise as a null feature. It is475

essential to emphasize that these patterns are driven by time-locked neural responses to repeated476

stimuli (widely known as inter-trial/-subject synchrony), not by randomnoise in the data. Therefore,477

when combined with informal reverse inference (i.e., falsely inferring a mental process from a brain478

activity pattern without accounting for base rates), which is also a common logical fallacy in cog-479

nitive neuroscience (Poldrack, 2006), RDD can lead to completely incorrect conclusions (e.g., “The480

auditory cortex was encoding this uniform random noise that was never presented to the participant.”;481

Figure 9—figure Supplement 2).482

But my features are not just random noise!483

As clearly demonstrated in the current paper, RDD can lead to spurious findings in cognitive neuro-484

science research when combinedwith questionable research practices such as adaptation of novel485

analysis frameworks without considering the original design of their data and informal reverse in-486

ference.487

I used random noise to demonstrate that the RDD effect can be observed with a feature that488

is not expected to be encoded in the real data. Certainly, no one would sincerely expect the audi-489

tory cortex to encode a random feature that cannot be extracted from the stimulus. In practice,490

researchers hypothesize that certain information extracted from the stimulus is encoded in the re-491

sponse based on some theoretical and/or empirical grounds. However, RDD can inflate the predic-492

tion accuracy of their hypothesized featurewell above the chance level evenwhen it is not encoded.493

This, in turn, can misguide future research and contribute to contamination of the literature.494
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Also, note that the RDD effect was greater for the phase-randomized envelope than the normal495

or uniform noise (Figure 8, Figure 10, Figure 12). This is because the phase-randomized envelope496

preserves the autocorrelation structure of the stimulus, making it more similar to true features497

than random noise. Since the hypothesized feature is extracted from actual stimuli, it necessarily498

bears some resemblance to true features, regardless of the nonlinear operations involved. There-499

fore, the risk of RDD is greater when the hypothesized feature is derived from the stimulus rather500

than from random noise.501

Often nested regressionmodels are compared to determine the unique predictive contribution502

of a feature of interest. For example, in our previous study (Leahy et al., 2021), the prediction ac-503

curacy of a model with an audio envelope (“reduced model”) was subtracted from the prediction504

accuracy of a model with the envelope and musical beats (“full model”) to test the encoding of mu-505

sical beats6. Even in such cases, RDD can still inflate the prediction accuracy of the hypothesized506

feature (or any additional random features) as shown in the simulation where additional random507

features moderately increased the RDD effect (Table 8—source data 1, the interaction between508

the number of features and stimulus repetition on null prediction: 𝜂2𝑝 = 0.101). Once again, in a509

proper cross-validation without information leakage, irrelevant features would have been regular-510

ized. However, in the presence of RDD, the regularization is disabled, and the irrelevant features511

are not penalized, thus leading to an inflated prediction accuracy.512

Is RDD really a different type of leakage than double-dipping?513

All types of information leakage are essentially a circular fallacy (Kaufman et al., 2012). However,514

RDD is different from themorewidely known type of circular fallacy—double dipping (Kriegeskorte515

et al., 2009)—in terms of the locus of the circularity. In double-dipping, it is the identical noise that516

is repeated in a selective analysis that uses the same dataset twice. The identical random noise517

appears once in setting up a selective analysis (e.g., channels or voxels of interest) and once again518

in testing the selective analysis, thus yielding spurious findings.519

In reverse-double-dipping, it is the underlying signal that is repeated in a predictive analysis520

that uses apparently different datasets. Because the data points were acquired at different times521

with independent noise (but with the same stimuli), an identical underlying signal may seem less522

obvious. Because of the independence of noise, even researchers who are well-aware of the issue523

of double-dipping might not notice the circularity in their analyses.524

Is RDD relevant to other analyses?525

Given the deceptive nature of RDD, readers may wonder whether the displayed problem is specific526

to linearized encoding analysis or also relevant to other popular analyses in cognitive neuroscience.527

Here, I discuss the relevance of RDD to other analyses.528

6While the comparison of nested models is a standard practice in Ordinary Least Squares (OLS) regression, it can be compli-
cated with regularized regression such as ridge. Themajor problem is over-regularization of relevant features due to irrelevant
features in the full model when a single penalty hyperparameter is used for all features (feature spaces). Amulti-penalty model
can address this issue better (e.g., La Tour et al., 2022; Kim et al., 2024).
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Beta image encoding529

Unlike the FIR model that estimates transfer function weights for each time point, the beta image530

encoding model is on top of the classical GLM that estimates ‘beta’ weights for each stimulus. This531

approach is popular in visual fMRI experiments where the gazing and visual attention of partici-532

pants is difficult (or unnecessary) to resolve in time (Kay et al., 2008) or auditory fMRI experiments533

with short (1-2 seconds) stimuli (Moerel et al., 2018). Thus, instead of directly handling the autocor-534

related BOLD time series, an average activation amplitude (i.e., beta weight) during a short trial is535

first estimated using a GLM, either using a theoretical transfer function called the ’canonical hemo-536

dynamic response function (cHRF)’ (Henson et al., 1999) or by fitting a regularized FIR model on a537

split data (Prince et al., 2022).538

For more general noise covariance structures, the beta estimation can be described as a Gen-539

eralized Least Squares (GLS) problem (Lage-Castellanos et al., 2019):540

𝝃 ≡ 𝜷 =
(

𝚽T𝛀−1𝚽
)−1 𝚽T𝛀−1𝐲, (23)

where 𝝃 ∈ ℝ𝑀×1 is the estimated stimulus-response vector for 𝑀 stimuli, 𝚽 ∈ ℝ𝑇×𝑀 is the cHRF-541

convolved design matrix for 𝑇 time points, Ω ∈ ℝ𝑇×𝑇 is the autocovariance matrix of the noise in542

the BOLD time series, and 𝐲 ∈ ℝ𝑇×1 is the BOLD time series. Then, the estimated beta weights are543

subjected to an encoding model:544

𝝃 = 𝐅𝐠 + 𝐞, (24)

where 𝐅 ∈ ℝ𝑀×𝐹 is a matrix that describes 𝐹 features for𝑀 presented stimuli, 𝐠 ∈ ℝ𝐹×1 is a feature-545

response vector of the voxel, and 𝐞 ∈ ℝ𝑀×1 is unknown noise.546

Let us consider a case where two sets of beta images with𝑀 identical stimuli were partitioned547

into CV folds (e.g., even runs vs. odd runs where all 𝑀 stimuli were presented in each run in548

randomized orders). Then, the expected null prediction accuracy by the Red Team would be also549

positive:550

𝔼
[

corr
(

𝝃2,𝐇, 𝝃2
)] (18)

≈ 𝐬T1𝐇1
(

𝐇T
1𝐇1

)−1 𝐇T
1𝐬1 ≥ 0, (25)

where 𝐬𝑖 = 𝐅𝑖𝐠 ∈ ℝ𝑀×1 is the underlying signal pattern (a “response profile”) for𝑀 stimuli in the 𝑖-th551

CV partition (𝑖 = 1, training; 𝑖 = 2, testing), 𝐇𝑖 ∈ ℝ𝑀×𝐹 is the null feature matrix.552

Although it is standard practice to randomize the presentation order of stimuli across runs553

and participants, the beta image estimation process can reorganize the response profiles, aligning554

them in a consistent order across all runs (e.g., sequentially from the first to the 𝑀-th stimuli).555

Therefore, the risk of RDD in the beta image encoding analysis remains a concern.556

Stimulus reconstruction557

Reconstruction of unseen stimuli (e.g., images or sounds) based on neural data demonstrates the558

remarkable potential of neuroimaging techniques for “mind-reading” (Kay et al., 2008; Santoro559

et al., 2017; Han et al., 2019). In practice, a set of linear models decodes features from neural data560

(e.g., beta images), followed by a reconstruction step where a simple classifier or a deep neural561

network (such as variational autoencoder) synthesizes the stimulus from the decoded features.562

For instance, a multivariate decoding model based on beta images can be described as:563

𝐅 = 𝐖𝚵 + 𝐞 (26)
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where 𝐅 ∈ ℝ𝑀×𝐹 is an 𝐹 -dimensional feature matrix for 𝑀 stimuli, 𝐖 ∈ ℝ𝑉 ×𝐹 is a spatial filter to564

decode the features, 𝚵 ∈ ℝ𝑀×𝑉 is the matrix of vectorized beta images for𝑀 stimuli and 𝑉 voxels.565

Since the decoding model is also a linear model like the encoding model, in principle, RDD can also566

occur. However, the goal of the analysis makes the requirement of “unseen stimuli” more explicitly.567

For example, if one fit a linear model with𝑁 −1 subjects’ responses to Stimulus A, and then tries to568

recover, once again, Stimulus A from a response of the 𝑖-th subject, the problem of the circularity in569

this design would bemore visible. Having said that, it is still possible that latent similarity of stimuli570

could be overlooked. Especially if there are too many stimuli to manually inspect, it is possible571

that certain stimuli are indeed non-identical but still highly similar (e.g., utterances by the same572

speaker; repetitions of musical phrases). Checking inter-stimulus correlation for all features prior573

to partitioning them into training and test sets will prevent such cases of hidden ‘twinning’.574

Multivariate classification575

Multivariate classification analysis has been widely used in the cognitive neuroscience commu-576

nity, commonly known as multivoxel (or multivariate) pattern analysis (MVPCA; Kriegeskorte et al.,577

2006) or single-trial classification in electrophysiological data such as EEG, MEG, and ECoG (Müller-578

Gerking et al., 1999; Pistohl et al., 2012; Quandt et al., 2012), either on the whole set of response579

units (e.g., whole-brain classification; Ryali et al., 2010) or a striding set of local neighbors (e.g., a580

“searchlight”; Kriegeskorte et al., 2006). While a highly accurate classifier is necessary to build a581

brain-computer interface system, classification analysis can be useful even with low but significant582

accuracy—often the case in cognitive neuroscience research—as a multivariate model that tests583

the existence of certain information in the brain.584

In a simple case of two classes, a linear classifier can be constructed (Hastie et al., 2009) as:585

𝐶 = sign
(

𝐚T𝐰 +𝑤0
)

, ∕ (27)

where sign ∶ ℝ → {−1,+1} is a sign function, 𝐚 ∈ ℝ𝑉 ×1 is an activation pattern (e.g., an M/EEG586

topography or beta values in a region of interest) for an unknown class instance, 𝐰 ∈ ℝ𝑉 ×1 is a587

classification weight vector, 𝑤0 is a scalar bias term, and 𝐶 ∈ {−1,+1} is a class label.588

Classification can be seen as model-free as compared to model-based encoding or decoding589

analysis because the classification does not require a definition of a ‘model’ that describes which590

feature of the stimulus contributes to which response to what extent. Note that the trained weight591

vector only represents a separation of given training examples in a functional space, regardless592

of the features of the stimuli. For example, one may try to classify ‘happy music’ vs. ‘sad music’593

based on the EEG responses. However, if the chosen exemplars of the classes are imbalanced594

(e.g., all exemplars of ‘happy music’ naturally happened to be faster and louder than ‘sad music’),595

classification could be strongly driven by different acoustics, not necessarily due to perceived or596

evoked emotions from the music. That is, without carefully matching the training examples for all597

relevant features, the interpretation of classification analysis may remain unclear.598

Moreover, in principle, the repetition of stimuli (or at least classes) across data points is not just599

unavoidable but in fact necessary for the classification. In order to train a classifier, not only linear600

but also general, balanced training and testing examples of all classes are required (Hastie et al.,601
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2009). In other words, it is impossible to train a classifier for an ‘unseen class’ while it can be trained602

for an ‘unseen instance’ of a known class. Therefore, it can be noted that RDD does not concern603

classification analysis although the forward RDD (i.e., double-dipping) greatly concerns the feature604

selection process of classification.605

Representation similarity analysis606

Finally, let us consider a method that evaluates the second-order isomorphism across representa-607

tional systems (Kriegeskorte et al., 2008), as widely known as representational similarity analysis608

(RSA). This flexible method can define a ‘model‘ distance matrix between stimuli either based on609

class labels (as in classification analysis) or feature descriptors (as in encoding analysis). The origi-610

nal formulation of RSAdoes not involve cross-validation as the RSA is neither a predictivemodel nor611

classification (Kriegeskorte et al., 2008). A later extension introduced a cross-validated, squared612

Mahalanobis distance estimator—known as “crossnobis”—to enhance both reliability and inter-613

pretability (Diedrichsen and Kriegeskorte, 2017). When estimating a crossnobis distance between614

two conditions in a leave-one-out cross-validation (LOOCV) scheme, it is assumed that the num-615

ber of responses for both conditions remains balanced across all CV partitions. Thus, if identical616

stimuli are repeated across partitions as in case of RDD, then the crossnobis distance for the brain617

RDM would be biased by the stimulus-specific (not condition-specific) activity. However, even so,618

null descriptors would define a model RDM that is irrelevant to the brain RDM. Therefore, a false619

conclusion that “a brain region represents null information” cannot be wrongly supported by the620

association between the model and brain RDMs.621

RSA primarily focuses on second-order association across RDMs, typically assessed using linear622

(non-negative) regression. However, this association has been seldomly tested for its generalizabil-623

ity. For instance, two model RDMs—one based on object identity (e.g., a human face vs. a house)624

and another based on pixel intensity—and a brain RDM from trials where a subject views these625

images. In a training set, the association weights can be estimated as626

𝐝brain = 𝛽0 + 𝐝identity𝛽1 + 𝐝intensity𝛽2 (28)

where 𝐝 is a vector of flattened upper triangular elements excluding the diagonal of an RDM. In627

a test set, the relationship between RDMs for ‘unseen’ pictures can be predicted by the weights628

obtained from the training set, similarly to any predictive regression models (i.e., the third-order629

similarity). In such a case (i.e., a replication of RSA findings), the repetition of stimuli across train-630

ing and test sets (i.e., ‘unseen’ pictures were actually ‘seen’ pictures) could inflate the prediction631

accuracy. However, introducing null features would disrupt themodel RDMs and would greatly de-632

crease theweights (i.e., 𝛽𝑖) already in the training set, making it unlikely to observe a high prediction633

accuracy. In conclusion, the risk of RDD in RSA seems minimal.634

How do we detect and prevent RDD?635

The linearized encoding model has been utilized in various neuroimaging studies for many years636

(Kay et al., 2008), so it may be surprising that this pitfall has gone underrecognized for so long. In637

fact, many leading groups in this field have employed a hold-out validation design rather than cross-638

validation. In this approach, the testing dataset is deliberately acquired separately from the training639
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set by the experiment design. That is, training stimuli are repeated and averaged, while different640

stimuli are presented only once for training (e.g.,Nishimoto et al., 2011;Huth et al., 2016;Han et al.,641

2019). As a result, model predictions are evaluated only once per subject. This design prevents642

accidental stimulus repetition across CV partitions and thus avoids the risk of RDD. However, when643

the data is collected for a different purpose (e.g., intersubject synchrony) and researchers later644

apply encoding analysis, the likelihood of encountering RDD increases. This risk is particularly high645

for novice researchers who may misinterpret the valid recommendation to construct a ‘subject-646

independent model’ (Crosse et al., 2021), which involves cross-validation across subjects. Without647

careful implementation, they may inadvertently create a “stimulus-specific” model, as illustrated648

in Figure 6, leading to RDD pitfall. Thus, in this section, I provide practical recommendations for649

detecting and preventing RDD.650

Inter-trial correlation diagnosis651

As repeatedly shown throughout the paper, RDD occurs when the identical stimulus is presented652

more than once across CV partitions. Thus, a simple way to test a CV design for the risk of RDD is653

to compute the correlation across data epochs before partitioning the data into training, optimiza-654

tion, and test sets. If the correlation is high, RDD is likely to occur. This was already illustrated in655

the toy example. When no stimulus was repeated across CV partitions the inter-trial correlation656

(ITC) was on average zero across 200 random samplings (Figure 2q). However, when the stimulus657

was repeated across CV partitions, the ITC was on average about 0.8 (Figure 3q). Because this cor-658

relation can be cheaply computed prior to costly optimization and modeling fitting, this can be a659

useful diagnostic tool to assess risk for RDD.660

Checking ITC is also useful to detect latent similarity across stimuli as well. For example, two661

audio files are named differently but contain similar music, the researcher would not know about662

the leakage in the training examples. The ITC can be a useful tool to detect such latent similarity.663

For users’ convenience, an automatic validation test for a given CV design based on feature-664

ITC and response-ITC is implemented as a default option in the MATLAB package for Linearized665

Encoding Analysis (LEA; https://github.com/seunggookim/lea).666

Hold-out validation667

The most straightforward but also most expensive way to prevent RDD is to use a hold-out valida-668

tion design. In this design, the testing dataset is deliberately acquired separately from the training669

set by the experiment design. For example, the training stimuli are repeated and averaged, while670

different stimuli are presented only once for training. This design prevents accidental stimulus671

repetition across training and test partitions and thus avoids the risk of RDD.672

However, the hold-out validation requires more data points and higher SNR to work as com-673

pared to cross-validation. In cross-validation, the out-sample prediction performance is repeatedly674

assessed and averaged across different CV partition schemes to achieve an accurate estimation in675

the presence of sampling variance. In hold-out validation, the out-sample prediction performance676

is assessed only once. Thus, the sampling variance needs to be already suppressed to achieve a677

similarly accurate estimation of the true prediction performance.678
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Single-use stimulus679

Another straightforward design to prevent RDD is not to re-use a stimulus during the whole study.680

That is, a stimulus is presented to only one participant, only once, and never used again (i.e., a681

single-use stimulus). This design prevents any accidental stimulus repetition across CV partitions682

and thus avoids the risk of RDD. That is, any CV partitioning (across stimulus or participants or683

both) cannot occur RDD.684

However, this design may be not practical in most cases as it requires a large number of stimuli685

to be presented to each participant in order to ensure the sampling variance due to stimuli is686

sufficiently reduced. With a small number of stimuli, the attribution of the observed difference687

between participants would be ambiguous—to what extent should it be attributed to inter-subject688

variability and inter-stimulus variability?689

Group-level modeling690

In practice, acquiring neuroimaging data of high quality is still highly time-consuming and expen-691

sive. In particular, acquiring extensive data from vulnerable populations (e.g., patients, young chil-692

dren, elderly people) poses not only financial and logistical but also ethical concerns. Thus, many693

researchers may be motivated to combine the limited data across multiple subjects to further re-694

duce the sampling variance.695

As discussed, if an identical set of stimuli were used (as a standard procedure) across subjects,696

RDD could arise. In such a case, one option is to simply average all data across subjects within697

each group to test the group difference by cross-encoding (see below). If only a single long stim-698

ulus was used, multiple pseudo-trial segments should be created with appropriate gaps to avoid699

carry-over effect (e.g., for fMRI data, a gap of at least six seconds is recommended to account for700

the hemodynamic delay; for M/EEG data, a gap of one second or more), and design a CV across701

pseudo-trial segments. To detect potential repetition across segments, checking ITC of features is702

also recommended. While a one-size-fits-all hard threshold cannot be recommended because the703

temporal autocorrelation alters the expected variance of the null correlation, a strong correlation704

across segments (e.g., 𝑟 > 0.5) may indicate a risk of RDD. In that case, design a different CV scheme705

or a different segmentation scheme.706

A group-level inference is typically performed by testing the null hypothesis that the mean707

subject-wise prediction accuracy is indifferent between groups (e.g., clinical cases vs. healthy con-708

trols), using either a parametric test (e.g., a 𝑡-test based on the 𝑡-distribution) or a non-parametric709

test (e.g., a permutation test based on a null distribution generated by swapping group labels).710

When analyzing a group difference after averaging data within each group, a group difference can711

be tested by cross-encoding (i.e., predicting a mean response to the ‘unseen‘ segment B in the712

‘unseen‘ patient group by the weights fitted to a mean response to the ‘seen’ segment A in the713

control group) with bootstrapping across subjects (i.e., resampling with replacement when creat-714

ing the mean response). If the prediction is at or below chance level, the group difference can be715

concluded.716
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Limitations717

While the current paper provides a comprehensive analysis of RDD, some limitations should be718

acknowledged.719

First, only a single-penalty ridge regression was considered here. However, other types of reg-720

ularization (e.g., multi-penalty ridge, LASSO, elastic net) and different modeling techniques (e.g.,721

support vector regression, non-linear kernel ridge regression) were not explored. While the key722

mechanism of RDD (i.e., disabling regularization due to the similarity of the underlying signal be-723

tween the training and optimization sets) is likely to be present in these other methods, the extent724

to which the RDD effect generalizes to these other methods remains an open question.725

Also, no neural spike data or intracranial recordings—which is gradually becoming more ac-726

cessible for human patients—were analyzed in this paper. The RDD effect was only shown in the727

context of continuous-valued data acquired fromnon-invasivemethods (e.g., EEG, fMRI, and behav-728

ioral ratings). Sparse spike data or discrete firing rate datamay behave differently from continuous-729

valued data. However, given that the RDD effect is driven by the similarity of the underlying signal,730

RDD is likely to occur when the data is transformed in such away that stimulus-evoked, time-locked731

response is often demonstrated (e.g., high gamma power envelope of a local population of neu-732

rons; Ray et al., 2008; Jacobs and Kahana, 2009).733

Conclusion734

The current paper shows that RDD is a critical but underrecognized risk in encoding analysis and735

stimulus reconstruction. This circular fallacy—which I named reverse double-dipping—may lead to736

spurious findings that irrelevant information is encoded in neural signal. When carefully designed,737

the model-based approach will remain a powerful tool for information-based neuroimaging.738

Materials and Methods739

Simulation methods740

Predictors741

True features were sampled from an 𝐹 -dimensional multivariate Gaussian distribution with a cor-742

relation between adjacent parameters as: 𝐱 ∼ 𝐹 (𝟎,𝚺𝑋) where the covariance is defined as:743

𝚺𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 𝜌𝑋 𝜌2𝑋 ⋯ 𝜌𝐹−1
𝑋

𝜌𝑋 1 𝜌𝑋 ⋯ 𝜌𝐹−2
𝑋

𝜌2𝑋 𝜌𝑋 1 ⋯ 𝜌𝐹−3
𝑋

⋮ ⋮ ⋮ ⋱ ⋮

𝜌𝐹−1
𝑋 𝜌𝐹−2

𝑋 𝜌𝐹−3
𝑋 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

The 𝑓 -th feature 𝐱(𝑓 ) = [𝑥(𝑓 )
1 , 𝑥(𝑓 )

2 ,… , 𝑥(𝑓 )
𝑇 ]T is given with an AR(1) temporal autocorrelation 𝜙𝑋 as:744

𝑥(𝑓 )
𝑡 = 𝑥(𝑓 )

𝑡 + 𝜙𝑋𝑥
(𝑓 )
𝑡−1. (30)

Null features 𝐮were created in the same way as 𝐱, but independently. Only causal (i.e., nonneg-745

ative) delays were considered from {0} to {0,… , 𝐷 − 1} in creating a design matrix by horizontally746
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concatenating Toeplitz matrices as:747

𝐗 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥(1)
1 ⋯ 𝑥(1)

1−(𝐷−1) 𝑥(2)
1 ⋯ 𝑥(2)

1−(𝐷−1) ⋯ 𝑥(𝐹 )
1 ⋯ 𝑥(𝐹 )

1−(𝐷−1)

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋯ ⋮ ⋱ ⋮

𝑥(1)
𝑇 ⋯ 𝑥(1)

𝑇−(𝐷−1) 𝑥(2)
𝑇 ⋯ 𝑥(2)

𝑇−(𝐷−1) ⋯ 𝑥(𝐹 )
𝑇 ⋯ 𝑥(𝐹 )

𝑇−(𝐷−1)

⎤

⎥

⎥

⎥

⎥

⎦

. (31)

For convenience, all predictors were standardized to zero-mean and unit variance.748

Responses749

Responses 𝐘𝑖 ∈ ℝ𝑇 ×𝑉 were generated by plugging in a design matrix 𝐗𝑖, true weights 𝐁 ∈ ℝ𝐹𝐷×𝑉 ,750

and noise 𝐄𝑖 ∈ ℝ𝑇 ×𝑉 to the FIR model Equation 1 for the 𝑖-th partition as 𝐘𝑖 = 𝐗𝑖𝐁 + 𝐄𝑖 where751

𝐘𝑖 =
[

𝐲(1)𝑖 , 𝐲(2)𝑖 ,⋯ , 𝐲(𝑉 )
𝑖

]

, 𝐁 =
[

𝐛(1), 𝐛(2),⋯ , 𝐛(𝑉 )
]T, and 𝐄𝑖 =

[

𝐞(1)𝑖 , 𝐞(2)𝑖 ,⋯ , 𝐞(𝑉 )
𝑖

]

.752

True weights of the 𝑣-th variate 𝐛(𝑣) (a column of a response variable) were created from the753

multivariate Gaussian distribution with an AR(1) temporal correlation 𝜙𝐵 along the delays and a754

covariance 𝜎𝑏 across predictors corresponding to the rows of the design matrix as:755

𝐛(𝑣) =
[

𝑏(𝑣)1,1,⋯ , 𝑏(𝑣)1,𝐷, 𝑏
(𝑣)
2,1,⋯ , 𝑏(𝑣)2,𝐷, ⋯ , 𝑏(𝑣)𝐹 ,1,⋯ , 𝑏(𝑣)𝐹 ,𝐷

]T
(32)

where 𝑏(𝑣)𝑓,𝑑 is a scalar coefficient for the 𝑣-th variate, the 𝑓 -th feature, and the 𝑑-th delay. Noise 𝐞(𝑣) at756

the 𝑣-th variate was also created as Gaussian noise with an AR(1) temporal correlation 𝜙𝐸 as 𝑒
(𝑣)
𝑡 =757

𝑒(𝑣)𝑡 + 𝜙𝐸𝑒
(𝑣)
𝑡−1. In case of multivariate models (𝑉 ≥ 2), weights and noise have spatial autocorrelation:758

𝐛(𝑣) = 𝐛(𝑣) + 𝜃𝐵𝐛(𝑣−1) + 𝜃𝐵𝐛(𝑣+1) and 𝐞(𝑣) = 𝐞(𝑣) + 𝜃𝐸𝐞(𝑣−1) + 𝜃𝐸𝐞(𝑣+1) where a variate 𝑣 is a neighbor of 𝑣− 1759

and 𝑣 + 1 except for boundaries (𝑣 = 1 and 𝑣 = 𝑉 ).760

Before summing the signal 𝐗𝐁 and error 𝐄, the mean variance of error across variates was761

scaled so that it achieved the intended signal-to-noise ratio as𝑆 = 10 log10 𝜎2
𝑆∕𝜎

2
𝐸 . Then, all response762

variates were standardized to zero-mean and unit-variance.763

Optimization and evaluation764

Ridge parameters were optimized via a grid search (𝜆-grid = 10[−10,−9,…,10]) for each variate indepen-765

dently. To implement a nested 4-by-3-fold cross-validation (CV), in total 4 “trials” were generated766

for each random sampling. For the 4-fold-outer-loop, 3 trials (outer-training) vs. 1 trial (outer-test)767

were partitioned. Then, within each 3-fold-inner-loop with the 3 trials, 2 trials (inner-training) vs.768

1 trial (inner-optimization) were partitioned. In total 12 different partitions (each was called a “CV-769

fold”) were used for training (50%), optimization (25%), and test (25%) models. Prediction accuracy770

of Pearson correlation was averaged across the CV-folds. Random sampling was repeated for 1000771

times for each combination of model parameters.772

Computational considerations773

To minimize the number of inversion operations, a general linear model (GLM) formulation was774

used. That is, for each possible 𝜆, a regularized covariance matrix was inverted only once for all775

variates (i.e., voxels or channels). The sum of squared errors was then temporally stored, allowing776

the optimal 𝜆 to be determined for each variate. This approach is more efficient than a naïve777

method of inverting the covariance matrix separately for each variate, which would redundantly778

repeat the same calculation for all variates. Also, when computing Predictions, variates with the779

same optimal 𝜆 were grouped together into GLM models to reduce the number of inversions.780
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Computation was carried out using an in-house high-performance computing (HPC) server,781

where a user is allowed to utilize up to 192 CPUs of Intel Xeon Gold 6130 [2.10 GHz] in parallel.782

The actual utilization varied between 32–192 CPUs, depending on the demands of other users. An783

individual job of 1,000 random samplings took 100–400 seconds of CPU time. A total of 45,899784

jobs, which amounted to approximately 7 months of CPU time, was completed in about one week785

on the HPC server.786

Real data methods787

For clarity, the original studies (Kaneshiro et al., 2020; Sachs et al., 2020) focused on inter-subject788

synchrony in neural responses (EEG and fMRI) without specific hypotheses about the encoded789

features. Thus, these studies did not suffer from RDD.790

EEG data791

Data source The original study investigated the electroencephalographic correlates of temporal792

structure and beat in Western-style Indian pop music with Hindi lyrics (i.e., Bollywood music)793

(Kaneshiro et al., 2020). The raw dataset of 48 healthy participants was downloaded from794

the Stanford Digital Repository (https://purl.stanford.edu/sd922db3535).795

Data acquisition Scalp electrical potential data were acquired using a 128-channel Geodesic EEG796

System 300 (Electrical Geodesics, Inc., Oregon, USA) at a sampling rate of 1 kHz with vertex797

reference and electrode impedances less than 60 kΩ.798

Preprocessing The authors’ preprocessed data (CleanEEG_*) from the repository were used with799

the channel location file (GSN-HydroCel-125.sfp). As explained in the original publication800

(Kaneshiro et al., 2020), the authors’ preprocessing steps involved bandpass filtering (0.3–50801

Hz), downsampling (125 Hz), ocular artifacts removal using independent component analy-802

sis, bad channel interpolation, average re-referencing, and epoching. In addition, based on803

previous EEG encoding analyses where the low-frequency bands of the EEG signal mostly car-804

ried the audio envelope encoding (Di Liberto et al., 2015, 2020), we further bandpass filtered805

the EEG data to 𝛿 and 𝜃 bands (1–8 Hz) using the FIR filter in the MATLAB Signal Processing806

Toolbox (R2022b, RRID:SCR_001622).807

Data dimensions The analyzed EEG data were comprised of 125 channels, 32,878–33,982 time808

points (263.02–271.86 seconds at 125 Hz), 96 runs (48 subjects × 2 run) per stimulus with809

12 stimuli (3 versions of 4 songs). Two runs with the same stimuli were averaged for each810

participant to increase the signal-to-noise ratio of the evoked response. In the original study811

(Kaneshiro et al., 2020), a participantwas randomly assigned to one of 4 versions of th 4 songs812

(e.g., Intact-Song-A, Measure-shuffled-Song-B, Reserved-Song-C, Phase-scrambled-Song-D).813

The current study only analyzed the 3 versions except for phase-scrambled version, which814

did not evoke strong responses.815

fMRI data816

Data source The original study investigated the intersubject correlation in fMRI time series while817

participants were listening to sadmusic (Sachs et al., 2020). The published data include 2 sad818

musical pieces and 1 happy musical piece. The raw dataset of 39 healthy participants was819
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downloaded from OpenNeuro (RRID:SCR_005031, https://openneuro.org/datasets/ds003085/820

versions/1.0.0).821

Data acquisition Blood-oxygen-level-dependent (BOLD) signals were acquired using a 3-T Prisma822

magnetic resonance imaging system with a 32-channel head coil (Siemens Healthineers, Er-823

langen, Germany). Eight-fold acceleratedmultiband, T2*-weighted, gradient-echo, echo-planar824

imaging sequence was used to acquire 40 transverse slices at the sampling rate of 1 Hz and825

at the isotropic spatial resolution of 3 mm. Anatomical scans were also collected using a826

T1-weighted contrast sequence at the isotropic spatial resolution of 1 mm.827

Preprocessing After correcting for the susceptibility artifacts using the reversed phase-encoding828

images with topup in FSL (v6.0.2; https://fsl.fmrib.ox.ac.uk/fsl/), SPM12 (v6225; https://www.829

fil.ion.ucl.ac.uk/spm/software/spm12/) was used for slice timing correction and realignment of830

the functional 4-D time series data. AdvancedNormalization Tools (v2.3.5; https://github.com/831

ANTsX/ANTs) were used to perform symmetric diffeomorphic registration between individu-832

als’ anatomical 3-D images and the standard template 3-D image (MNI152_T1_2mm_brain.nii.gz)833

from FSL as well as the coregistration (rigid-body affine transform) between the anatomical834

3-D image and the temporally averaged functional 3-D image within each subject. The rigid-835

body and diffeomorphic transformations were combined and applied to each volume of the836

realigned 4-D functional image, which was resampled only once at the isotropic resolution of837

3 mm. Thereafter, the functional images were spatially smoothed with an isotropic Gaussian838

kernel (with a full width at half maximum of 6 mm). ICA-AROMA (v0.4.4.beta) was used to839

automatically reject ‘noise’ components to attenuate head motion artifacts and non-BOLD840

image intensity perturbations (https://github.com/maartenmennes/ICA-AROMA).841

Data dimensions The analyzed fMRI data consisted of 62,062 “brain” voxels (based on a brain842

mask created using bet in FSL), 178–525 time points (or seconds), 3 stimuli, and 39 subjects.843

Due to limited field of views in some subjects, only 61,572 voxels had valid values in the lin-844

earized encoding analysis results. The authors of the original study excluded 3 subjects from845

their analysis for either motion artifacts and emotional ratings but included in the shared846

data repository. In the current analysis, all 39 subjects were analyzed for no apparent mo-847

tion artifacts after ICA-AROMA.848

Behavioral data849

Data source As part of the fMRI study (Sachs et al., 2020), behavioral data of 39 healthy partici-850

pants were downloaded from OpenNeuro (https://openneuro.org/datasets/ds003085/versions/851

1.0.0).852

Data acquisition After the fMRI session, participants listened to the same stimuli while rating their853

evoked instantaneous emotions using a physical slider (“fader”) in a silent room. Emotional854

scales of Emotionality (the intensity of the evoked feelings of sadness or happiness, depending855

on the intended emotion of each piece) and Enjoyment (themomentary feelings of enjoyment)856

were rated, one at a time. In total, a participant listened to an identical stimulus for three857

times including the fMRI session. The slider position values (an integer from 0 to 127) were858

sampled at about 30.3 Hz.859
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Preprocessing The imported time series were linearly detrended and downsampled at 5 Hz after860

an anti-aliasing low-pass filtering using the resample function in the MATLAB Signal Process-861

ing Toolbox (R2022b).862

Data dimensions The analyzed behavioral data comprised 2 emotional scales, 841–2,576 time863

points depending on the stimulus (178–525 seconds at 5 Hz), 3 stimuli, and 39 subjects.864

Linearized encoding analysis865

Features True features 𝐗were the audio envelope extracted from themusic samples for the well-866

established auditory response in various types of human brain data including fMRI (Giraud867

et al., 2000; Harms et al., 2005; Overath et al., 2012), EEG (Aiken and Picton, 2008), and in-868

tracranial electrocorticography (Kubanek et al., 2013). The envelopewas created by summing869

the output of the “cochlear model“ with a 128-channel filterbank, of which characteristic fre-870

quencies ranged loglinearly from 180 to 7,040 Hz, as in the NSL Auditory-cortical MATLAB871

Toolbox (v2001; http://nsl.isr.umd.edu/downloads.html), and then further downsampled to the872

sampling rate of the human data (EEG: 125 Hz; fMRI: 1 Hz, behavioral ratings: 5 Hz). Null fea-873

tures𝐔were either (a) uniformnoise, (b) normal noise, or (c) the phase-randomized envelope.874

Phase-randomization preserves the amplitude spectrum of the envelope, thus preserves the875

temporal autocorrelation. This is necessary to correctly estimate the null correlation dis-876

tribution of the autocorrelated noise. In previous studies (Leahy et al., 2021; Kaneshiro877

et al., 2020), phase-randomization was used to generate an empirical null distribution for878

non-parameteric statistical inference. The phase randomization was done using fast Fourier879

transform (FFT), random rotation of phases while preserving complex conjugation for pos-880

itive and negative frequencies, and followed by an inverse FFT. While this method (‘unwin-881

dowed Fourier transform’ in Theiler et al., 1992) may introduce spurious high frequencies882

for non-stationary signals, the envelope of stimuli that include zeros (i.e., silent periods) at883

the beginning and end of the musical stimuli can be assumed as stationary (i.e., the values of884

the last samples are similar to the first samples). To estimate the central tendency, 100 noise885

realizations were created for all cases. All features (either true or null) were standardized886

prior to fitting.887

FIR modeling As in the simulations, an FIR model was regularized by ridge hyperparameters that888

are specific for response units (i.e., EEG channels, fMRI voxels, rating scales). Accounting for889

the inherent time scales of the measures, different delays of the features were used. To890

demonstrate the effect of the model’s flexibility, 3 cases of delays (common choice, shorter,891

and longer) were used. For EEG, delays of [0 to 0.3 sec; 39 samples], [0 to 0.5 sec; 64 sam-892

ples], and [0 to 1 sec; 126 samples] were used. For fMRI, [4 to 6 sec; 3 samples], and [3 to893

9 sec; 7 samples], [0 to 12 sec; 13 samples]. For behaviors, [0 to 5 sec; 26 samples], [0 to894

10 sec; 51 samples], and [0 to 15 sec; 76 samples]. To avoid transient onset/offset effects at895

the boundaries of the musical stimuli, the first and last 15 seconds were excluded from the896

analysis. Both stimuli and responses were standardized before the FIR modeling.897

Cross-validation In all cases, the CV partition was 3-by-2 nested k-fold (i.e., 33%, 33%, 33% for898

training, optimization, test sets) for the given structures of the real data (i.e., 3 stimuli per899
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participant). To compare CV schemes, prediction accuracies were averaged across CV folds900

and models (either subject-specific or stimulus-specific).901

Statistical inference The RDD effect is defined as the difference between null prediction accura-902

cies: RDD = 𝑟̄stim(𝐔; IsRep = 1) − 𝑟̄subj(𝐔; IsRep = 0). The null hypothesis is that the expected903

RDD effect is zero 0 ∶ 𝔼(RDD) = 0 and the alterative hypothesis is that RDD effect is posi-904

tive 𝐴 ∶ 𝔼(RDD) > 0. Non-parameteric 𝑃 -values were computed by permutation test (𝐾 =905

10,000). That is, for 200 (100 randomizations × 2 CV-designs) vectors of prediction accura-906

cies, the binary variable IsRep was randomly permuted (max = 𝐶(200, 100) > 1057), and the907

two-sample 𝑡-statistics between two CV-designs were calculated for 10,000 times to form a908

null distribution. Resulting one-sided 𝑃 -values were further corrected for the multiple re-909

sponse units using false discovery rate (FDR) adjustment (Yekutieli and Benjamini, 1999) to910

control the family-wise error rate as 𝑃FDR < 0.01.911

Software implementation All encoding analyses of the multimodal datasets (EEG, fMRI, behav-912

ior) were done using an MATLAB package named Linearized Encoding Analysis (LEA; https:913

//github.com/seunggookim/lea), developed by the author.914
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Table 1. Definition of variables, parameters, and notations.

Variables Description

𝐗 ∈ ℝ𝑇×𝐹𝐷 True finite impulse response design matrix

𝐔 ∈ ℝ𝑇×𝐹𝐷 Null finite impulse response design matrix

𝐲 ∈ ℝ𝑇×1 Response vector

𝐛 ∈ ℝ𝐹𝐷×1 Regression coefficient vector

𝐬 ∈ ℝ𝑇×1 Signal time series

𝐞 ∈ ℝ𝑇×1 Noise time strategies

𝐋 ∈ ℝ𝐹𝐷×𝐹𝐷 Tikhonov regularization matrix

Parameters Description

𝑇 Number of time points

𝐹 Number of features

𝐷 Number of delays

𝑃 Number of predictors (= 𝐹𝐷)

𝜙 AR(1) temporal correlation parameter

𝜃 AR(1) spatial correlation parameter

𝜌 Multicollinearity parameter

𝜆 regularization parameter

Notations Description

‖ ⋅ ‖ 𝑙2-norm of a vector

‖ ⋅ ‖F Frobenius norm of a matrix

(⋅)T Transposition

(⋅)(𝑖) 𝑖-th column vector of a matrix

diag(⋅) Diagonal matrix with the diagonal elements from the given vector

(⋅; ⋅) Optimization function

⋅∗ Optimal solution

⋅̂ Estimate of a variable

(⋅)𝑖 𝑖-th cross-validation set

⋅̄ Mean

𝔼[⋅] Expectation of a random variable

∝ Proportional to

≈ Approximately equal to

≡ Equivalent to
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Table 2. Parameters of the simulations

Category Parameter Notation

Complexity of model Number of delays 𝐷

Number of features 𝐹

Dimensionality of data Number of variates 𝑉

Strength of signal Signal-to-noise ratio (SNR) 𝑆

AR(1) temporal autocorrelation (if 𝑇 ≥ 2) of true predictors 𝜙𝑋

of null predictors 𝜙𝑈

of true weight 𝜙𝐵

of noise 𝜙𝐸

AR(1) spatial autocorrelation (if 𝑉 ≥ 2) of true weight 𝜃𝐵
of noise 𝜃𝐸

Multicollinearity (if 𝐹 ≥ 2) of true predictors 𝜌𝑋
of null predictors 𝜌𝑈

Presence of information leakage Binary flag for the stimulus repetition IsRep

Number of time points 𝑇 = 100, 𝜆-grid = 10[−10,−9,…,15], Number of samplings 𝐾 = 1000

Table 3. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies in univariate models with univariate
responses using true predictors 𝐗

.

Contrast SS 𝐹 -stat 𝜂2𝑝

𝑆 8.377 × 101 1.867 × 105 0.985

𝜙𝑋∶𝜙𝐸 2.645 × 10−1 5.895 × 102 0.175

𝑆∶𝜙𝐸 2.037 × 10−1 4.539 × 102 0.140

𝑆∶𝜙𝑋∶𝜙𝐸 3.187 × 10−1 7.101 × 102 0.203

𝑑𝑓1 = 1, 𝑑𝑓2 = 2788, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 3—source data 1. Full anova table: https://zenodo.org/records/15101528/files/uni-uni_anova-x.xlsx
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Table 4. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies in univariate models with univariate
responses using null predictors 𝐔

.

Contrast SS 𝐹 -stat 𝜂2𝑝

IsRep 1.569 × 101 3.864 × 104 0.933

𝑆 2.199 5.413 × 103 0.660

𝐷 1.504 3.704 × 103 0.571

𝜙𝑋 4.312 × 10−1 1.062 × 103 0.276

𝜙𝑈 3.607 × 10−1 8.881 × 102 0.242

𝑆∶IsRep 2.209 5.438 × 103 0.661

IsRep∶𝐷 1.458 3.589 × 103 0.563

𝜙𝑋∶𝜙𝑈 6.987 × 10−1 1.720 × 103 0.382

𝜙𝑋∶IsRep 4.435 × 10−1 1.092 × 103 0.281

𝜙𝑈∶IsRep 3.357 × 10−1 8.266 × 102 0.229

𝑆∶𝐷 2.164 × 10−1 5.328 × 102 0.160

𝜙𝑋∶𝜙𝑈∶IsRep 7.277 × 10−1 1.792 × 103 0.391

𝑆∶IsRep∶𝐷 2.408 × 10−1 5.929 × 102 0.175

𝑑𝑓1 = 1, 𝑑𝑓2 = 2788, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 4—source data 1. Full anova table: https://zenodo.org/records/15101528/files/uni-uni_anova-u.xlsx

Table 5. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies of multivariate models with univariate
responses using true predictors 𝐗

Contrast SS 𝐹 -stat 𝜂2𝑝

𝑆 5.729 × 102 5.984 × 105 0.972

𝜌𝑋 2.374 × 101 2.479 × 104 0.593

𝐷 1.258 × 101 1.314 × 104 0.436

IsRep 6.991 7.302 × 103 0.301

𝐹 6.196 6.471 × 103 0.276

𝜙𝑋 4.010 4.188 × 103 0.198

𝜙𝐸 3.557 3.715 × 103 0.179

𝜙𝑋∶𝜙𝐸 5.048 5.273 × 103 0.237

𝜌𝑋∶𝐷 3.213 3.356 × 103 0.165

𝜌𝑋∶IsRep 2.841 2.967 × 103 0.149

𝑑𝑓1 = 1, 𝑑𝑓2 = 16 984, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 5—source data 1. Full anova table: https://zenodo.org/records/15101528/files/mult-uni_anova-x.xlsx
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Table 6. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies of multivariate models with univariate
responses using null predictors 𝐔

Contrast SS 𝐹 -stat 𝜂2𝑝

IsRep 4.161 × 102 1.057 × 105 0.862

𝑆 6.946 × 101 1.765 × 104 0.510

𝜌𝑈 5.282 × 101 1.342 × 104 0.441

𝐷 3.429 × 101 8.715 × 103 0.339

𝑆∶IsRep 6.933 × 101 1.762 × 104 0.509

𝜌𝑈∶IsRep 5.296 × 101 1.346 × 104 0.442

IsRep∶𝐷 3.469 × 101 8.816 × 103 0.342

𝑑𝑓1 = 1, 𝑑𝑓2 = 16 984, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 6—source data 1. Full anova table: https://zenodo.org/records/15101528/files/mult-uni_anova-u.xlsx

Table 7. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies of multivariate models with multivariate
responses using true predictors 𝐗

Contrast SS 𝐹 -stat 𝜂2𝑝

𝑆 1.161 × 104 1.417 × 107 0.976

𝜌𝑋 3.606 × 102 4.404 × 105 0.557

𝐷 2.177 × 102 2.659 × 105 0.432

IsRep 8.921 × 101 1.090 × 105 0.237

𝐹 8.851 × 101 1.081 × 105 0.236

𝜙𝑋 7.909 × 101 9.660 × 104 0.216

𝜙𝐸 7.119 × 101 8.696 × 104 0.199

𝜙𝑋∶𝜙𝐸 1.057 × 102 1.292 × 105 0.269

𝜌𝑋∶𝐷 5.227 × 101 6.384 × 104 0.154

𝑆∶𝜙𝑋∶𝜙𝐸 4.999 × 101 6.106 × 104 0.148

𝑑𝑓1 = 1, 𝑑𝑓2 = 350 191, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 7—source data 1. Full anova table: https://zenodo.org/records/15101528/files/mult-mult_anova-x.xlsx
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Table 8. Strong effects (𝜂2𝑝 ≥ 0.160) on the prediction accuracies of multivariate models on multivariate
responses with null predictors 𝐔

Contrast SS 𝐹 -stat 𝜂2𝑝

IsRep 7.636 × 103 2.446 × 106 0.875

𝑆 1.269 × 103 4.066 × 105 0.537

𝜌𝑈 8.979 × 102 2.876 × 105 0.451

𝐷 7.222 × 102 2.313 × 105 0.398

𝑆∶IsRep 1.270 × 103 4.068 × 105 0.538

𝜌𝑈∶IsRep 8.967 × 102 2.872 × 105 0.451

IsRep∶𝐷 7.226 × 102 2.315 × 105 0.398

𝑑𝑓1 = 1, 𝑑𝑓2 = 349 964, 𝑃Bonferroni ≤ 0.0001, 𝜂2𝑝 ≥ 0.14, SS: sum of squares

Table 8—source data 1. Full anova table: https://zenodo.org/records/15101528/files/mult-mult_anova-u.xlsx
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Appendix 11067

Optimization processes with identical signals1068

In a scenario where the strong underlying signals are identical in the training and optimiza-

tion sets (𝐬1 = 𝐬3 and ‖𝐬1‖ ≫ 0), the optimization prediction accuracy for a given 𝜆 ≥ 0 is:

𝔼
[

corr
(

𝐲̂3,𝐗[𝜆], 𝐲3
)]

= 𝔼

[
(

𝐲̂3,𝐗[𝜆]
)T 𝐲3

‖𝐲̂3,𝐗‖‖𝐲3‖

]

∝ 𝔼
[

(

𝐲̂3,𝐗[𝜆]
)T 𝐲3

]

= 𝔼
[

𝐲T1𝐏
T
𝐗[𝜆]𝐲3

]

= 𝔼
[

(𝐬1 + 𝐞1)T𝐏T𝐗[𝜆](𝐬1 + 𝐞3)
]

= 𝐬T1
{

𝐗1
(

𝐗T
1𝐗1 + 𝜆𝐈

)−1 𝐗T
1

}T
𝐬1

(A1.1)
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If 𝐗 ∈ ℝ𝑇×𝑃 where 𝑃 = 𝐹𝐷 is orthonormal and full-rank, Equation A1.1 can be simplified

as a quadratic form of a scaled Ordinary Least Squares projection matrix and the signal as

(Hastie et al., 2009, pp. 64):

𝐬T1
{

𝐗1
(

𝐗T
1𝐗1 + 𝜆𝐈

)−1 𝐗T
1

}T
𝐬1 =

1
1 + 𝜆

𝐬T1𝐗1
(

𝐗T
1𝐗1

)−1 𝐗T
1𝐬1 =

‖𝐬1‖
1 + 𝜆

, (A1.2)

for which the optimal 𝜆 to maximize the prediction accuracy is zero (∵‖𝐬1‖ > 0):

𝜆∗ = argmax
𝜆

‖𝐬1‖
1 + 𝜆

= 0. (A1.3)
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More generally, the singular value decomposition of 𝐗 can be used; 𝐗 = 𝐔𝐃𝐕T where

𝐔 ∈ ℝ𝑇×𝑃 and 𝐕 ∈ ℝ𝑃×𝑃 are orthonormal, and the diagonal matrix 𝐃 ∈ ℝ𝑃×𝑃 contains the

singular values: 𝑑1 ≥ 𝑑2 ≥ ⋯ ≥ 𝑑𝑃 ≥ 0. Then, Equation A1.1 can be written as (Hastie et al.,

2009, Eq. 3.47):

𝐬T1
{

𝐗1
(

𝐗T
1𝐗1 + 𝜆𝐈

)−1 𝐗T
1

}T
𝐬1 = 𝐬T1

(

𝑃
∑

𝑗=1
𝐮(𝑗)

𝑑2
𝑗

𝑑2
𝑗 + 𝜆

𝐮T(𝑗)

)

𝐬1. (A1.4)
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For any 𝑑𝑗 = 0 (i.e., 𝐗 is rank-deficit), 𝜆 needs to be positive for the prediction accuracy

value to be defined. Nonetheless, the prediction accuracy is maximized when 𝜆∗ = 𝜖 ≈ 0 for

𝜖 is the smallest positive value.
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Figure 5—figure supplement 1. [TODO: FIXME] Simulations of multivariate-feature, univariate-

response models when the multicolinearity of true feature is zero. Mean prediction accuracies are

plotted over the number of features 𝐹 when multicolinearity (a) 𝜌𝑈 = 0 and (b) 𝜌𝑈 = 1. Marker

styles and colors are identical to those in Figure 4. Each column represents a specified SNR level.

The number of delays is 𝐷 = 1 in the top rows and 𝐷 = 9 in the bottom rows. Other parameters

were as follows: 𝐾 = 1000, 𝜙𝑈 = 0, 𝜙𝐵 = 0, 𝜙𝐸 = 0, 𝜌𝑋 = 0.
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Figure 7—figure supplement 1. EEG linearized encoding analysis results with delays from 0 to

0.5 sec with an audio envelope (top row), a single case of the normal noise (middle row), and an

average of 100 normal noises (bottom row; circled in pale yellow). For each CV scheme (IsRep = 0,

left panels; IsRep = 1, right panels), prediction accuracy (𝑟; blue to red), logarithmic ridge hyperpa-

rameter (log10 𝜆; gray to white), summed weights (𝑏; blue to green) are shown along the columns.
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Figure 7—figure supplement 2. EEG topographies of linearized encoding analysis results with

delays from 0 to 0.5 sec with the uniform noise as the null feature. The visualization scheme is

identical to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 3. EEG topographies of linearized encoding analysis results with a

delay from 0 to 0.3 sec with the phase-randomized envelope as the null feature. The visualization

scheme is identical to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 4. EEG topographies of linearized encoding analysis results with a

delay from 0 sec to 0.3 sec with the normal noise as the null feature. The visualization scheme is

identical to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 5. EEG topographies of linearized encoding analysis results with a

delay from 0 to 0.3 sec with the uniform envelope as the null feature. The visualization scheme is

identical to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 6. EEG topographies of linearized encoding analysis results with

delays from 0 to 1 sec with the phase-randomized envelope as the null feature. The visualization

scheme is identical to Figure 7—figure Supplement 1.

1100



Figure 7—figure supplement 7. EEG topographies of linearized encoding analysis results with de-

lays from 0 to 1 sec with the normal noise as the null feature. The visualization scheme is identical

to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 8. EEG topographies of linearized encoding analysis results with

delays from 0 to 1 sec with the uniform noise as the null feature. The visualization scheme is

identical to Figure 7—figure Supplement 1.
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Figure 7—figure supplement 9. First three principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 0 to 0.5 sec are displayed by the topography of eigen-

vectors and the time series of eigenvariates with the explained variance noted. The weights are

grouped by features (𝑋, true audio envelope; 𝑈 [𝑝ℎ𝑎𝑠𝑒], phase-randomized envelope; 𝑈 [𝑛𝑜𝑟𝑚], nor-

mal noise; 𝑈 [𝑢𝑛𝑖], uniform noise) and the CV schemes (IsRep = 0, IsRep = 1).
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Figure 7—figure supplement 10. First three principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 0 to 0.3 sec are displayed. The visualization scheme is

identical to Figure 7—figure Supplement 9.
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Figure 7—figure supplement 11. First three principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 0 to 1 sec are displayed. The visualization scheme is

identical to Figure 7—figure Supplement 9.
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Figure 9—figure supplement 1. fMRI linearized encoding analysis results with delays from 3 to 9

secwith an audio envelope (top row), a single case of the normal noise (middle row), and an average

of 100 phase-randomized envelopes (bottom row, pale yellow background). For each CV scheme

(IsRep = 0, left panels; IsRep = 1, right panels), prediction accuracy (𝑟, blue to red), logarithmic ridge

hyperparameter (log10 𝜆, gray to white), transfer function weights that are summed over delays (𝑏,

blue to green) are shown along the columns. The 3-D volumes can be viewed with the NeuroVault

web viewer (https://identifiers.org/neurovault.collection:19626).

1106

https://identifiers.org/neurovault.collection:19626


max r(X;0) = 0.118

-0.1 0 0.1

r

min log6(X;0) = 6.32

5 10

log6

max |b(X;0)| = 0.107

-0.05 0 0.05

b

max r(U;0) = 0.049

-0.1 0 0.1

r

min log6(U;0) = 5.74

5 10

log6

max |b(U;0)| = 0.074

-0.05 0 0.05

b

max E[r(U;0)] = 0.006

-0.1 0 0.1

r

min E[log6(U;0)] = 8.12

5 10

log6

max |E[b(U;0)]| = 0.006

-0.05 0 0.05

b

max r(X;1) = 0.159

-0.1 0 0.1

r

min log6(X;1) = -20.00

5 10

log6

max |b(X;1)| = 0.131

-0.05 0 0.05

b

max r(U;1) = 0.076

-0.1 0 0.1

r

min log6(U;1) = -20.00

5 10

log6

max |b(U;1)| = 0.117

-0.05 0 0.05

b

max E[r(U;1)] = 0.042

-0.1 0 0.1

r

min E[log6(U;1)] = -20.00

5 10

log6

max |E[b(U;1)]| = 0.009

-0.05 0 0.05

b

IsRep=0 IsRep=1

Figure 9—figure supplement 2. fMRI linearized encoding analysis results with delays from 3 to 9

sec with the uniform noise as the null feature. The visualization scheme is identical to Figure 9—

figure Supplement 1.
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Figure 9—figure supplement 3. fMRI linearized encoding analysis results with delays from 4 to 6

sec with the phase-randomized envelope as the null feature. The visualization scheme is identical

to Figure 9—figure Supplement 1.
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Figure 9—figure supplement 4. fMRI linearized encoding analysis results with delays from 4 to

6 sec with the normal noise as the null feature. The visualization scheme is identical to Figure 9—

figure Supplement 1.
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Figure 9—figure supplement 5. fMRI linearized encoding analysis results with delays from 4 to 6

sec with the uniform noise as the null feature. The visualization scheme is identical to Figure 9—

figure Supplement 1.
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Figure 9—figure supplement 6. fMRI linearized encoding analysis results with delays from 0 to 12

sec with the phase-randomized envelope as the null feature. The visualization scheme is identical

to Figure 9—figure Supplement 1.

1111



max r(X;0) = 0.105

-0.1 0 0.1

r

min log6(X;0) = 7.05

5 10

log6

max |b(X;0)| = 0.089

-0.05 0 0.05

b

max r(U;0) = 0.041

-0.1 0 0.1

r

min log6(U;0) = 7.47

5 10

log6

max |b(U;0)| = 0.138

-0.05 0 0.05

b

max E[r(U;0)] = 0.005

-0.1 0 0.1

r

min E[log6(U;0)] = 8.49

5 10

log6

max |E[b(U;0)]| = 0.010

-0.05 0 0.05

b

max r(X;1) = 0.166

-0.1 0 0.1

r

min log6(X;1) = -20.00

5 10

log6

max |b(X;1)| = 0.124

-0.05 0 0.05

b

max r(U;1) = 0.068

-0.1 0 0.1

r

min log6(U;1) = -20.00

5 10

log6

max |b(U;1)| = 0.212

-0.05 0 0.05

b

max E[r(U;1)] = 0.058

-0.1 0 0.1

r

min E[log6(U;1)] = -20.00

5 10

log6

max |E[b(U;1)]| = 0.017

-0.05 0 0.05

b

IsRep=0 IsRep=1

Figure 9—figure supplement 7. fMRI linearized encoding analysis results with delays from 4 to

6 sec with the normal noise as the null feature. The visualization scheme is identical to Figure 9—

figure Supplement 1.
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Figure 9—figure supplement 8. fMRI linearized encoding analysis results with delays from 0 to

12 sec with the uniform noise as the null feature. The visualization scheme is identical to Figure 9—

figure Supplement 1.
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Figure 9—figure supplement 9. First three principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 3 to 9 sec are displayed in the transverse slice of eigen-

vectors and the time series of eigenvariates with the explained variance noted. The weights are

grouped by features (𝑋, true audio envelope; 𝑈 [𝑝ℎ𝑎𝑠𝑒], phase-randomized envelope; 𝑈 [𝑛𝑜𝑟𝑚], nor-

mal noise; 𝑈 [𝑢𝑛𝑖], uniform noise) and the CV schemes (IsRep = 0, IsRep = 1).
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Figure 9—figure supplement 10. First two principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 4 to 6 sec are displayed. The visualization scheme is

identical to Figure 9—figure Supplement 9.
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Figure 9—figure supplement 11. First three principal components (PCs) of the transfer function

weights (𝑏) of the models with delays from 0 to 12 sec are displayed. The visualization scheme is

identical to Figure 9—figure Supplement 9.
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Figure 11—figure supplement 1. Behavioral linearized encoding analysis results with delays from

0 to 10 sec with an audio envelope (top row), a single case of a phase-randomized envelope (middle

row), and an average of 100 phase-randomized envelopes (bottom row, pale yellow background).

For each CV scheme (IsRep = 0, left panels; IsRep = 1, right panels), prediction accuracy (𝑟, red bars),

logarithmic ridge hyperparameter (log10 𝜆, gray bars), transfer function weights that are summed

over delays (𝑏, blue bars) are shown along the columns.
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Figure 11—figure supplement 2. Behavioral linearized encoding analysis results with delays from

0 to 10 sec with the uniform noise as the null feature. The visualization scheme is identical to

Figure 11—figure Supplement 1.
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Figure 11—figure supplement 3. Behavioral linearized encoding analysis results with delays from

0 to 5 sec with the phase-randomized envelope as the null feature. The visualization scheme is

identical to Figure 11—figure Supplement 1.
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Figure 11—figure supplement 4. Behavioral linearized encoding analysis results with delays from

0 to 5 sec with the phase-randomized envelope as the null feature. The visualization scheme is

identical to Figure 11—figure Supplement 1.
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Figure 11—figure supplement 5. Behavioral linearized encoding analysis results with delays from

0 to 5 sec with the uniform noise as the null feature. The visualization scheme is identical to Fig-

ure 11—figure Supplement 1.
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Figure 11—figure supplement 6. Behavioral linearized encoding analysis results with delays from

0 to 15 sec with the phase-randomized envelope as the null feature. The visualization scheme is

identical to Figure 11—figure Supplement 1.
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Figure 11—figure supplement 7. Behavioral linearized encoding analysis results with delays from

0 to 15 sec with the phase-randomized envelope as the null feature. The visualization scheme is

identical to Figure 11—figure Supplement 1.
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Figure 11—figure supplement 8. Behavioral linearized encoding analysis results with delays from

0 to 15 sec with the uniform noise as the null feature. The visualization scheme is identical to

Figure 11—figure Supplement 1.
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Figure 11—figure supplement 9. Transfer function weights (𝑏) of Emotionality (green) and Enjoy-

ment (blue) for the models with delays from 0 to 15 sec. The weights are grouped by features (𝑋,

true audio envelop; 𝑈 [𝑝ℎ𝑎𝑠𝑒], phase-randomized envelop; 𝑈 [𝑛𝑜𝑟𝑚], normal noise; 𝑈 [𝑢𝑛𝑖], uniform

noise) and the CV schemes (IsRep = 0, IsRep = 1). Note that each weight time series is individually

scaled.
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Figure 11—figure supplement 10. Transfer function weights (𝑏) of the models with delays from 0

to 5 sec are displayed. The visualization scheme is identical to Figure 11—figure Supplement 9.
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Figure 11—figure supplement 11. Transfer function weights (𝑏) of the models with delays from 0

to 15 sec are displayed. The visualization scheme is identical to Figure 11—figure Supplement 9.
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