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ABSTRACT

Myeloarchitecture of cerebral cortex has crucial implication
on the function of cortical columnar modules. Based on the
recent development of high-field magnetic resonance imag-
ing (MRI), it was demonstrated that it is possible to individu-
ally reconstruct such intracortical microstructures. However,
there is a scarcity of publicly available frameworks to perform
group-wise statistical inferences on high resolution data. In
this paper, we present a novel framework that parameterizes
curved brain structures in order to construct correspondences
across subjects without deforming individual geometry. We
use the second Laplace-Beltrami eigenfunction to build such
a parameterization, which is known to monotonically increase
along the longest geodesic distance on an arbitrary manifold.
To demonstrate our framework, a study on the lateralization
of Heschl’s gyrus is presented with multiple comparison cor-
rection.

Index Terms— Quantitative MRI, Myeloarchitecture,

Cortical profile, Laplace-Beltrami operator, Shape parametriza-
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1. INTRODUCTION

The organization of neuronal cell bodies (cytoarchitecture)
and myelinated fibers (myeloarchitecture) is an important
basis for the quantification of columnar structures in cere-
bral cortex that are likely to function in a modular fashion.
The cortical columns have often been characterized by corti-
cal profiles that radially intersect the cortex in post-mortem
slices, but recent development in high-field magnetic reso-
nance imaging (MRI) has enabled in-vivo observation of such
microstructures [1]. In particular, quantitative T1 mapping,
which is known to inversely correlate with myelination, can
be used to define myelination profiles.

Previous structural analyses usually incorporate a certain
degree of deformation of the individual anatomy into a com-
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Fig. 1. For a given Heschl’s gyrus (HG; left), isolevel con-
tours of the first principal component w; in 3-D Euclidean
space (middle) and the second Laplace-Beltrami eigenfunc-
tion v (right) are shown. One can note that w; increases
along a linear axis while ¢/; increases naturally following the
shape of HG (Section 2 for details).
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mon space to establish intersubject correspondences in a 3-
D volume (e.g. voxel-based morphometry [2]) or on a 2-D
surface (e.g. surface-based analysis [3]). However, it is un-
known, to what extent, such distortion might introduce a spa-
tial bias into statistical tests in the high-field MRI data.

Circumventing the registration issue of entire brains (see
[4] for a spectral method for whole-brain matching) , a spec-
tral parametrization for a relatively well-defined brain region
such as hippocampus or Heschl’s gyrus (HG) could be a vi-
able way to perform a statistical inference on group-wise dif-
ferences based on theoretical hypotheses.

In this paper, we present a novel framework that parame-
terizes curved brain structures in order to construct correspon-
dences across subjects without deforming individual geome-
tries. For such parameterization, we propose to use the second
eigenvector of the Laplace-Beltrami (LB) operator. The LB
operator is a generalized Laplacian operator over an arbitrary
manifold and its eigenfunctions have been used in biomedi-
cal imaging to extract intrinsic geometry of various structures
[5, 6]. Especially, the second LB eigenfunction is of inter-
est for its monotonic property along the longest geodesic on
the manifold [7]. This behavior was exploited to construct a
curved medial axis of elongated structures such as the human
mandible [6], the cingulate gyrus and the corpus callosum [8].

To demonstrate our proposed framework, a study on the
lateralization of HG, i.e. comparison between the left and
right HGs will be explained in the following sections. Al-
though HG has a relatively simple shape for a neuroanatom-
ical structure, in reality, even HG often extends along a non-
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trivial axis. For instance, a spectrum in 3-D Euclidean space
such as the first principle component shows its limitations in
capturing the individual anatomy, as compared to the second
LB eigenfunction in Figure 1. This illustrates our motivation
to use LB eigenfunctions for parameterization. Statistical in-
ferences will be also given testing some possible models with
the application of multiple comparison correction.

2. METHODS

2.1. Image acquisition and preprocessing

Using a 7 T whole-body MR system (Siemens, Germany),
two inversion images of six healthy subjects (all males; mean
age=25.7 + 2.2 years) were acquired using the MP2RAGE se-
quence with an isotropic resolution of 0.7 mm. T1-weighted
images (T1w) and the longitudinal relaxation time T; map-
ping (quantitative T1 map; qT1) were derived.

First voxels outside a head in T1w and qT1 images were
masked by a thresholded second inversion image. Then non-
brain voxels were discarded using the segmentation tool in
SPM8/VBMS'. The images were aligned to the Montreal’s
Neurological Institute template (MNI152) using rigid-body
transformation and up-sampled to 0.4 mm isovoxel, which is
desirable to increase precision of layer extraction and cortical
profile sampling (Section 2.3) since the particular computa-
tions are made with volumetric representations of surfaces as
3D signed distance maps.

2.2. Surface reconstruction and manual delineation

The outer boundary between gray matter and cerebrospinal

fluid and the inner boundary between gray matter and white
2

matter were semi-automatically constructed using FreeSurfer-.

Due to the constraint of 1 mm resolution in the current public
version of FreeSurfer, manual corrections were made with
qT1 images in higher resolution after the initial surface gen-
eration. Reconstruction of cortical surfaces were iteratively
done until the visual inspection on the region of interest (i.e.
HG) was satisfactory.

From the final surface, a patch of superior temporal plane
was cut and flattened. On the flattened patch, HGs were man-
ually delineated based on criteria from literature [9] with al-
ternative inspections on the original patch. The final segmen-
tations of HGs were confirmed by a radiologist (A.V.). Ex-
amples of HG segmentations are shown in Figure 2. There
were posterior duplication of HG and/or complete or incom-
plete sulcus intermedix either in both hemispheres (n=4) or in
one hemisphere (n=2). For the sake of simplicity, the ante-
rior gyrus, or the single HG, is called HG1 and the posterior
gyrus, divided by the extension of SI, is called HG2 in the
following.

Thttp://dbm.neuro.uni-jena.de/vbm/
Zhttp://surfer.nmr.mgh.harvard.edu

Fig. 2. The anterior HG (red) and the posterior duplication
(green) on a left hemisphere.
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Fig. 3. For a region (white rectangle on the inset of Figure
2), constructed cortical profiles are visualized with the outer
(blue), central (gray) and inner (red) surfaces.

2.3. Realistic cortical layer estimation

From the outer to inner surfaces, 19 intracortical layers were
estimated using a realistic layer model [10], which is imple-
mented in the high-field MRI processing tools [11] from our
institute®. This equi-volume model takes local curvatures into
account and showed better compliance with a well-known
striatal organization of primary cortices in ex- and in-vivo data
than Laplace- and equidistance-based models [10].

qT1 volumes at 0.4 mm isovoxel were directly sampled
for each vertex of the central surface, which is an average of
inner and outer surfaces. From the central surface, the vertices
were first projected onto the nearest layer, then further pro-
jected onto both inward and outward layers until they reach
the cortical boundaries. Due to the projection process, the
equi-volumetric profiles do not necessarily connect the cor-
responding vertices of the inner and outer surfaces. Thus a
myelination profile defined on a vertex is the characteristic of

3http://www.cbs.mpg.de/institute/software/cbs-hrt
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Fig. 4. Parametrization of myelination profiles based on the
second LB eigenvector ¢); (upper) and discrete regions R (k)
between isolevel contours (middle). The 2-D profile maps
I (lower) are shown with superimposed plots (red) showing
depth-wise average between the anterolateral (AL) and pos-
teromedial (PM) endings.

the cortical profile that passes through the vertex. Estimated
cortical profiles within the HGs of a subject are visualized in
Figure 3.

2.4. Laplace-Beltrami operator on discrete open mesh

As mentioned earlier, we use the second LB eigenvector of
HGs to build correspondence across subjects. Consider a Rie-
mannian 2-manifold M embedded in R?. Eigenfunctions v j
of LB operator A defined on M satisfy

Aty = =X, )

and form orthonormal bases for a Hilbert space of square in-
tegrable functions that are defined on the manifold M [7].
As we order eigenvalues as 0 = Ag < A\; < Ay < ---, the
corresponding eigenfunctions are g, 11, ¥ - - - .

Closed forms to solve the eigensystem Eq. (1) are only
known for some manifolds such as a plane or a sphere [7]. In
order to numerically compute Eq. (1) on an arbitrary man-
ifold, we could discretize LB operator on a triangular mesh
employing finite element method (FEM) [5, 7, 12]. The prob-
lem is now the following generalized eigenvalue problem:

CV¥ = \AVY, @)

where C is cotangent matrix and A is mass matrix. Detailed
explanations can be found in [7]. We used a MATLAB (Math-

works, Natick, MA) implementation4 [13] that uses the al-
gorithm given in [12] for meshes with any topology (either
closed or open).

The second eigenvector t); was orientated such that the
positive and negative peaks would be placed towards the pos-
teromedial (PM) and anterolateral (AL) directions from the
zero-valued center, respectively. Then we computed average
myelination profiles of vertices v that are included in the k-th
region R (k) between adjacent levelsets of 1, as

R(k) ={v e M|ni <¥1(v) < iy }s 3)

where 7y, is the k-th contour level [8]. We set 30 regions from
the AL to PM endings of the HGs. The mean distance be-
tween isolevel contours was 1.22 £+ 0.40 mm and the mean
size of R(k) was 22.3 £ 7.6 vertices. The second LB eigen-
vectors of two HGs from different subjects and parametrized
myelination profiles are given in Figure 4.

2.5. Statistical inferences

Once we parameterized the 2-D open patch into a 1-D repre-
sentation, we can represent myelination profiles over HG as
discrete 2-D images I with a dimension of 30 (AL — PM axis,
or normalized 1) by 21 (normalized cortical depth). As a
demonstration of a group-wise analysis, here we test if there
are any differences between the left and right HGs and/or be-
tween the first and second HGs. It can be inferred by fitting a
general linear model (GLM) as

dI = By + €, “4)

with dI denoting a paired difference image of one subject
while matching the laterality and the order of HGs. € is Gaus-
sian error with zero mean and unit standard deviation. An
inference on a null hypothesis Hy : 89 = 0 would be identi-
cal to the one-sample paired ¢-test.

We can also test the lateralization effect when we control
the other variable with such a linear model as

dl = By + /1 X +¢, )

where X is a dummy covariate being either the order or the
laterality of HGs. Note that our hypothesisis still Hy : g = 0
since we are not interested in the term 31 X here.

However, one can even test the interaction of the dummy
variable with the paired differences by taking Eq. (5) as a full
model and Eq. (4) as a reduced model into an F-test. Then
the null hypothesis is Hy : 51 = 0.

Since we test 630 pixels collectively that are highly de-
pendent due to the smooth nature of biological signals and the
partial volume effect, a MATLAB toolbox SurfStat® was used
for multiple comparison correction based on random field the-
ory (RTF) [14]. The maps were minimally smoothed with the
full width at half maximum of 2 edges to comply with the
RTF assumption of the smoothness of field.

“http://www.di.ens.fr/ aubry/wks.html
Shttp://www.math.mcgill.ca/keith/surfstat/
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Fig. 5. Statistical inference on parameterized myelination
profiles. GLM Eq. (4) (a,b), Eq. (5) (¢,d) and interactions
(e,f) were tested for the effect of laterality (a,c,e) and order
(b,d,f) of HGs. Contours mark the thresholds (o = 0.05) in
uncorrected p-values (gray) and corrected p-values (green).

3. RESULTS AND DISCUSSION

3.1. Lateralization of HG

We found multiple signals for all models and contrasts (un-
corrected p < 0.05). However, after multiple comparison
correction, the difference was significant only for the later-
ality tested by the simple model Eq. (4) (max ¢(9) = 6.76;
min corrected p = 0.008; Figure 5 (a)). It may be interpreted
as that the myelination of the right HG was greater than the
left HG given the inverse relationship between myelination
and qT1 value. However, we cannot rule out the possibility
of the partial volume effect as the signal lies near the inner
boundary. In addition, the number of subjects is quite small.
It should be noted that the primary purpose of the lateral-
ity study on HGs is to demonstrate our proposed group-wise
framework. Even though the GLMs were given on the paired
differences, one can easily adapt the given models simply by
replacing the paired differences with response measurements.

3.2. Extension of LB parameterization of HGs

We have shown a group-wise analysis using the second LB
eigenvector on the curved HGs. Although we simplified as
HGI1 and HG?2 in the paper, the topological variability of HG
sometimes involve even the higher degree of complexity. That
is, not only the number of gyri but also the depth, length and

locations of intermediate sulci differ across individuals and
hemispheres. Utilizing the Reeb graph on LB eigenfunctions
[8] might be helpful to deal with the topological variety in
future works.
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