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Abstract. We present a new subcortical structure shape modeling frame-
work using heat kernel smoothing constructed with the Laplace-Beltrami
eigenfunctions. The proposed framework is applied in investigating the
influence of age and gender on amygdala and hippocampus shape in
the middle age and elderly population. We detected the significant age
e↵ect on hippocampus in accordance with the previous studies. In ad-
dition, we also detected the significant gender e↵ect on amygdala. Since
we did not find any di↵erences in the traditional volumetric methods, it
demonstrates the benefit of the current framework over the traditional
methods.

1 Introduction

Amygdala and hippocampus are primary subcortical structures involved in reg-
ulating emotion and memory [1,2]. Age and gender could be major factors that
a↵ect the functions and structures of these regions, as implied by post-mortem
studies [3]. Although the atrophy of brain tissues associated with the increase of
age is reported in several hundreds subjects [4,5], the studies on the atrophy of
amygdala and hippocampus are somewhat inconsistent. The volume reduction of
amygdala and hippocampus due to aging has been found in some studies [6,7,8],
while other studies did not find such association [9,4,10]. For the e↵ect of gen-
der, one reported significant di↵erences in amygdala and hippocampus volume
between the groups [11] whereas others failed to reproduce it [12]. The inconsis-
tency in the traditional volumetric results may have been due to the di↵erent
image processing and analysis pipelines used in these studies.

In most of those volumetric studies, the total volume of the amygdala or
hippocampus was estimated by tracing the region of interest (ROI) manually and
counting the number of voxels within the ROI. The limitation of the traditional
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ROI-based volumetry is that it cannot determine if the volume di↵erence is
di↵use over the whole ROI or localized within specific regions of the ROI [13].

Although there are many computational methods to localize cortical shape
characterization such as voxel-based morphometry (VBM) that compares gray
matter or white matter density in a voxel-wise fashion across spatially normal-
ized MRI volumes [14,15] and tensor-based morphometry (TBM) that uses the
deformation field which is derived from the spatial normalization [13,16], there
are not many literature on the local shape analysis of subcortical structures other
than some studies [17,18,19] mostly due to the di�culty of segmentation of the
subcortical structures.

Here we present a framework for subcortical structure shape analysis using
heat kernel smoothing via Laplace-Beltrami eigenfunction while employing the
deformation field that is derived from spatial normalization. Using the proposed
framework, we examine the e↵ect of age and gender on amygdala and hippocam-
pus, contrasting the traditional volumetric analysis.

2 Method

We analyze the shape of subcortical structures as following steps: (1) obtain a
population mean volume averaging the spatially normalized binary masks, and
extract a template surface from the averaged binary volume (section 2.1), (2) in-
terpolate the 3D displacement vector field onto the vertices of the surface meshes
(section 2.2), (3) smooth out the length of displacement along the template sur-
face using heat kernel smoothing to reduce noise, and smooth out the template
surface as well for better visualization (section 2.2 and 2.2), (4) perform a gen-
eral linear model testing the e↵ect of age and gender. The details in each stage
are discussed as below except the inference which is given in section 3.

2.1 Images and preprocessing

We have T1-weighted magnetic resonance images (MRI) of 69 middle age and
elderly adults. The mean age is 58.04 ± 11.34 years, ranging between 38 to 79
years. The subjects are 23 males and 46 females. The amygdalae and hippocampi
were manually segmented by an each individual rater.

We computed deformation field to normalize whole brain as well as regional
masks. Brain tissues in the MRI scans were first segmented using Brain Extrac-
tion Tool (BET) [20]. Then the study specific template was constructed using
the di↵eomorphic shape and intensity averaging technique through Advanced
Normalization Tools (ANTS) with cross-correlation as the similarity metric [21].

We normalized the masks into the template space applying the resulting de-
formation field. The normalized masks were then averaged building probabilistic
maps and thresholded at 50%. Iso-surfaces were extracted using the marching

cube algorithm [22] as implemented in MATLAB. The averaged masks and cor-
responding surfaces are shown in Fig. 1.
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Fig. 1. Averaged masks overlaid on the template brain (upper row) and corresponding
iso-surfaces (lower row).
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2.2 Inverse deformation field interpolation

We have already computed inverse deformation field over whole brain that reg-
isters template image to an individual image during the spatial normalization.
Thus we can obtain the inverse deformation field on each vertex by its smoothed
coordinates using linear interpolation.

The inverse deformation fields on the vertices can deform the template surface
to match the an individual surface, or the original manual segmentation, more
or less. In this sense, we quantify how long the vertex on the template surface
should be moved to match the individual surface with the L2-norm of the dis-
placement vector field. WE USE THE LENGTH AS MEASURE FOR THOSE
REASONS.... Other morphological measures are also available. In Chung et
al.[16], surface-based morphological measures such as local area dilatation and
local curvature dilatation by deformation have been used to measure the rate of
expansion or reduction of cortical surface growth. AND... This corresponds to
the local feature that describes structural shapes (Fig. 2).

Fig. 2. Inverse deformation field (blue arrows) on an axial slice of the template brain
(left) and its interpolation on the left hippocampus surface (right). Yellow contour in
the left panel indicates the boundary of the averaged mask of the left hippocampus.

2.3 Heat kernel smoothing

The measurements on the extracted surface are noisy. So it is necessary
to smooth out the measurements to increase the signal-to-noise ratio [13,16].
We employ heat kernel smoothing using Laplace-Beltrami eigenfunctions here



LB: subcortical structure 5

[23,24]. This method is anlaytic in a sense that heat kernel smoothing is for-
mulated as a series expansion explicitly [24]. Thus we can avoid the instability
associated with solving the di↵usion equations numerically [25].

Consider a real-valued measure Y defined on a manifold M ⇢ R3. We assume
the following additive model on Y at a point p:

Y (p) = ✓(p) + ✏(p), (1)

where ✓(p) is the unknown mean signal and ✏(p) is a zero-mean Gaussian ran-
dom field. We may assume further Y 2 L2(M), the space of square integrable
functions on M with the inner product hf, gi =

R
M f(p)g(p)dµ(p), where µ is

the Lebesgue measure such that µ(M) is the volume of M. Solving

� 
j

= ��
j

 
j

, (2)

for the Laplace-Beltrami operator � on M, we order eigenvalues 0 = �0 < �1 �
�2 · · · and corresponding eigenfunctions  0, 1, 2, · · ·. Then the eigenfunctions
 
j

form an orthonormal basis in L2(M) [25].
Using the eigenfunctions, heat kernel K

�

(p, q) is analytically given as

K
�

(p, q) =
1X

j=0

e��� 
j

(p) 
j

(q), (3)

where � is the bandwidth of the kernel [26]. Then heat kernel smoothing of Y is
given analytically as

K
�

⇤ Y (p) =
1X

j=0

e����
j

 
j

(p), (4)

where �
j

= hY, 
j

(p)i are Fourier coe�cients. This is taken as the estimate for
✓. Since the expansion (4) is a unique solution to isotropic heat di↵usion [26],
we can avoid the need to solve the di↵usion using less stable numerical schemes
such as the finite di↵erence method [27].

2.4 Numerical Implementation

Generalized eigenvalue problem As the closed form expression for the eigen-
functions of the Laplace-Beltrami operator on an arbitrary curved surface is
unknown, the eigenfunctions are numerically calculated by discretizing the LB
operator. To solve the eigensystem (2), we need to discretize it on a triangular
mesh using the Cotan formulation. Using the Cotan formulation, (2) is simplified
as generalized eigenvalue problem:

C = �A (5)

where C is the sti↵ness matrix, A is the mass matrix and  is the unknown
eigenfunction evaluated at mesh vertices. A few of first eigenfunctions for each
surface are shown in Fig. 3.
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Finite eigenfunction expansion Let H
k

be the subspace spanned by up to k-
th degree basis. Then an arbitrary measurement Y is estimated in the subspace
H

k

by minimizing the sum of squared residual:

arg min
g2Hk

||g � Y (p)||2 =
kX

j=0

�
j

 
j

(p). (6)

Consider the triangular mesh for M with N
v

nodes and let � = (�0, · · · ,�k)0
and Y = (Y (p1), · · · , Y (p

Nv ))
0, for k  N

v

. Then, we can represent (6) as the
normal equation,

Y = � , (7)

where  = ( 0, · · · , k

) and  = ( 
j

(p1), · · · , j

(p
Nv ))

0, and � is estimated

in the least squares fashion, b� = ( 0 )�1 0Y. Since the size of matrix  0 
can become large when a large number of basis are necessary to obtain, it may
be di�cult to directly invert the matrix. So we have adopted a more general
iterative strategy to overcome possible computational bottleneck for large k.

Iterative residual fitting algorithm Fourier coe�cients are estimated using
iterative residual fitting algorithm that utilizes the orthonormality of the eigen-
functions [28]. Decompose the subspace H

k

into smaller subspaces as the direct
sum H

k

= I0�· · · I
k

, where each subspace I
j

is the projection of H
k

along the j-
th eigenfunction. Instead of directly solving the normal equation (7), we project
the normal equations into a smaller subspace I

j

and find the corresponding �
j

in an iterative fashion increasing the degree from 0 to k.
At degree k=0, we writeY =  

o

�0+r0, where r0 is the residual of estimating
Y in subspace I0. Then, we estimate �0 by minimizing the residual in the least
squares fashion:

b�0 = ( 0
0 0)

�1 0
0Y. (8)

At degree j, we have
r
j�1 =  

j

�
j

+ r
j

, (9)

where the previous residual r
j�1 = Y� 0

b�0 · · ·� j�1
b�
j�1. The next residual

r
j

is then estimated as b�
j

= ( 0
j j)�1 0

jrj�1.
In this paper, we choose the bandwidth of smoothing �=0.5 and computed

the finite eigenfunction expansion using up to 1000-th degree basis (Fig. 3). We
smoothed the length of displacement vector field and the coordinates of template
surfaces as well.

3 Results: General Linear Models on Surface Shapes

3.1 Traditional volumetric analysis

Given that the image resolution is 1 x 1 x 1 mm, the volume of amygdala and
hippocampus were simply estimated by the number of voxels within the mask. In
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Original Smoothed

Original Smoothed

Fig. 3. Illustration for heat kernel smoothing using Laplace-Beltrami eigenfunctions.
The left-most surfaces are original surfaces with the length of displacement vector field
color-coded. First three eigenfunctions  j are shown in the middle. The right-most
surfaces are smoothed with � = 0.5 with the smoothed length of displacement vector
field.

order to account for the e↵ect of variability in brain size, the brain volume was
estimated excluding cerebellum. The brain volume significantly correlated with
the amygdala volume(Left: r= 0.55, p < 10�5; Right: r=0.49, p < 10�4) and
the hippocampus volume (Left: r= 0.59, p < 10�7; Right: r=0.63, p < 10�8).

We model the volume of regional structure y as

y = �1 + �2 · Brain + �3 ·Age + �4 ·Gender + ✏ (10)

where ✏ is zero mean Gaussian noise. The age and gender e↵ects are determined
by testing the significance of �3 and �4 terms.

On the amygdala volume, we did not find the significant e↵ect of age (Left:
p= 0.31; Right: p= 0.15; Total: p= 0.20; Figure 4, upper row) nor gender (Left:
p= 0.20; Right: p= 0.35; Total: p= 0.25; Figure 4, lower row). Either on the
hippocampus volume, we did not find a significant e↵ect of age (Left: p= 0.92;
Right: p= 0.90; Total: p= 0.90; Figure 5, upper row). However, we found a
significant e↵ect of gender (Left: p= 0.05; Right: p= 0.04; Total: p= 0.03; Figure
5, lower row).

3.2 Localized surface shape analysis

The lengths of displacement vector fields along the template surfaces were es-
timated and smoothed as previously described in section 2. The same GLMs
and variables as in section 3.1 were used once again, except that the measures
are the lengths of displacement vector field. Using SurfStat MATLAB tool-
box (http://www.math.mcgill.ca/keith/surfstat/), random field corrected
p-values were thresholded at 0.01.

http://www.math.mcgill.ca/keith/surfstat/
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Fig. 4. Scatterplots of left, right and combined amygdala volumes against age (upper
row) and gender (lower row).
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Fig. 5. Scatterplots of the volume of left, right and total hippocampus against age
(upper row) and gender (lower row).
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We found significant e↵ects of age on the posterior part of hippocampi (Left:
max(F)=39.43, p < 10�5; Right: max(F)=23.11, p=0.002; Fig 6) but no age ef-
fects on the amygdalae. Also we found a small region that di↵ered between gender
groups on the inferior part of the right amygdala (max(F)=24.66, p <0.001; Fig
6). However we did not find any significant gender e↵ects on the other structures.

Fig. 6. F-statistic maps on the template surfaces for the age e↵ect (a) and the gender
e↵ect (b). Corresponding corrected p-values are indicated. Note that we accept p < 0.01
as significant in this paper.

4 Discussion

4.1 Anatomical findings

We have presented a shape analysis framework for investigating relevant factors
that a↵ect the shape of subcortical structures, comparing with the traditional
volumetric analysis.

Age e↵ect The traditional volumetric analysis could not find any significant
e↵ects of age on the hippocampi and amygdalae. However, we found a significant
e↵ects of age using the proposed shape analysis framework. Particularly, on the
caudal regions of the left and right hippocampi, we found a highly localized
signals. It is consistent with other shape modeling studies [29,18].
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Gender e↵ect In volumetric analysis, we find a significant e↵ect of gender in
terms of the hippocampus volume, although we could not verify the finding in
shape modeling analysis. However, interestingly, we found a gender e↵ect on the
right amygdala, which we did not found using volumetric analysis. Although fur-
ther examination is necessary for this finding, but it demonstrates the advantage
of the proposed framework.

4.2 Methodological considerations
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